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Abstract

The following document repots the findings from the work on the constraints, characteristics, and
representation of motor primitives in human participants. Section 1 afelhesrable concerns the
biomechanical and cognitive characteristics to motor primitives. Specifically, the work of the SLF
group concerns the biomechanical characteristics of motor primitives relating to the dimensionality
of torque and muscle patterns, estimation of forces associated with muscle synergies, and the
biomechanicatonstraints oocomotion.In addition, tvo studies from the UniTu are reportdthe

first study investigates thEMG activity of well-understood motor ks (elbow flexions and
extensiony aiming at the clarificatiomf motor featuresvhich can becharacterized by different

kinds of muscle synergieSThe second styinvestigates how walking and reaching are coordinated
using a novel experimental paradigmd presenting a new method for the extractiokireématic
primitives Additionally, the work of the UniBi group is presented relating to the identification and
classification of cognitive primitives over the course of motor learning, the influencetnfdtion

type on the development of cognitive primitives, the overlap between primitives on a cognitive and
motor level, and finally the constraint of anticipation on movement sequeti8gction 2 of the
deliverable,the interaction of complex actiowith cognitive processes in the anticipation of
perceptual action effects and goals is explored. First, the work of the UniBi group is presented. This
work covers the findings from a series of studies that investigate the overlap betwetsioagd
working memory processes involving grasping postures. Next, the influence of anticipation on
priming domain relevant knowledge representations is explored. Following, the work of the UniTu
group is presented. Building off of the locomotion and grasping workliaed by the UniBi

group (Land, Rosenbaum, Seegelke, & Schatik3, UniTu examines a novel way to model the
locomotion and goatlirected grasping actions captured from the MOCAP data of humans.
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1 Biomechanical and Cognitive Characteristics of Motor Primitives

Section 1 of thedeliverable concerns the biomechanical and cognitive characteristics and
constraints to motor primitivegirst, the work of the SLF groujs presented. This work covers the
findings from a series of studies that investigate the biomechanical characteristics of motor
primitives relating to locomotion and arm contrdfollowing the work of the UniTu group is
preseng¢d, which investigates the potential physiological meaning of motor primitives associated
with simple and complex, mulgoal movements. Finallyhe workof the UniBi group is presented
which covers the cognitive characteristics of the development ofrrpatuitives. In doing so, a

new method for examining the overlap between cognitive and motor primitigpesgpissedFinally,
theconstraints on movement sequencing deriving from anticipatiopresented.

1.1Biomechanical characteristics of motor primtives (SLF)

1.1.1General introduction

Motor primitives as muscle synergies or temporal componatgstified from electromyographic
signal recorded during many different motor skills (see Delivesable, 1.2, and 1)3 generate
forces and movements through a complex musculoskeletal appdtatuslationships betweehe

nature and the characteristmfsmotor primitives at the neuromuscular levels and the biomechanical
characteristics and constraints of thenan msculoskeletal system is central issue in the study of
modular organization of human motor control. The SLF group has investigated the biomechanical
characteristics of motor primitive underlying both the control of arm and locomotion.

A key characteristi of the modular architecturénvolved in the control of a motor skill is the
number of motor primitivesequired for generating the motor commandsch can be inferred
from the dimensionality of theecordedmuscle patternsAs muscles can only pull, afidamental
biomechanical characteristic imposing a fmagativity constrainbnto the modulation of torques
and enepoint forces, a minimum of N + 1 primitives at the muscle level are required to generate N
dimensional forces and torques. However,-negdive combinations of fewer muscle primitives
require higher levels of econtraction, i.e. muscular effort, to generate the same force. Thus, to
investigate such tradeff between dimensionality and effort in the context of arm control, the
dimensionalityof the muscle patterns for reaching has been compared with the dimensionality of
the joint torques estimated from inverse dynamics calculatidinsensionality of both torques and
muscle patterns have been characterizedhen spatial, temporal, and sma@mporal domains
(Russo et al., in preparation)

A direct way to characterize the biomechanical function of a motor primitive is to estimate the
forces and torques generated by its recruitment. While such approach is generally challenging
because of theotnplex postural, naetinear, and dynamic dependence of the force generated by
muscle contraction, a reliable characterization is feasible in the context of isometric force
generation. Thus, the forces associatechtigcle synergies have been investigatetihé context of
multidirectional isometric force generation at the handinear mapping of muscle activity
recorded from many muscles into hand forces has been estimated by multiple linear regressions.
Such mapping has then been used to estimate thesfassociated to the muscle synergies
identified from muscle patterns by nonnegative matrix factorization during an isometric reaching
task. Moreover, the observed modulation of muscle activities as a function of force direction has
been compared with thdirectional tuning predicted by synergistic and 13gnergistic model of
muscle recruitmeniBorzelli et al. in preparation).
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In the context of locomotion, biomechanical constraints to motor primitives have been investigated
experimentally in adults bghanging locomotor conditions and thus modifying biomechanical
requirements. First, the effect of different sensory feedback on motor primitives has been
characterized during walking forward, backward, on an inclined surface, sideways, and stepping in
place (Zelik et al.submitted. Moreover, bilateral coordination between unilateral primitives for
walking on a splibelt treadmill at different speed combinations for tiglt and left legs has been
studied (MacLellan et al. in preparation). Finally, cooatiion between arm and leg (cervical and
lumbar) CPGs has been characterized during crawling at different speeds (MacLellan et al. 2013).

This section of the Deliverable is organized into five subsections, each corresponding to the articles
mentionedaboy. The fir st Dimengonality & ist omuesand naukcle patterns

for reaching movemenisBorzelli et al, Effort minimization and synergistic muscle recruitment

for threedimensional force generationMacLellan et al. Tefinporal stuctures of locomotor
primitives adapt to environmental feedback ar e i n preparation and w
fourth article Zelik et al, Can modular strategies reduce dimensionality of neural control during
multidirectional locomotion® ) bears submitted. The last articlddcLellan et al. 2013
fiDecoupling of upper and lower limb pattern generators during human crawling at different arm:leg
speed combinations) has been published.



1.1.2Dimensionality of joint torques and musclepatterns for reaching
movements

Abstract

Muscle activities underlying many motor behaviors can be generated by a small number of basic
activation patterns with specific features shared across movement conditions. Such low
dimensionality suggests that thentral nervous system (CNS) relies on a modular organization to
simplify control. However, the relationship between the dimensionality of muscle patterns and that
of joint torques is unknown, because of redundancy andinearities in mapping the forménto

the latter. We compared the torques acting at four arm joints during fast reaching movements in
different directions in the frontal and sagittal planes and the underlying muscle patterns. The
dimensionality of the nogravitational components of tues and muscle patterns in the spatial,
temporal, and spatiotemporal domains was estimated by multidimensional decomposition
techniques. The spatial organization of torques was captured by two or three generators, indicating
that not all the available cadination patterns are employed by the CNS. A single temporal
generator with a biphasic profile was identified, generalizing previous observations on a single
plane. The number of spatiotemporal generators was equal to the product of the spatial aatl tempor
dimensionalities and their organization was essentially synchronous. Muscle pattern
dimensionalities were higher than torques dimensionalities but also higher than the minimum
imposed by the inherent naregativity of muscle activations. The spatiotemgbhalimensionality of

the muscle patterns was lower than the product of their spatial and temporal dimensionality,
indicating the existence of specific asynchronous coordination patterns. Thus, the larger
dimensionalities of the muscle patterns may allbes €NS to overcome the redundancy and-non
linearity of the musculoskeletal system and to flexibly generate endpoint trajectories with simple
kinematic features using a limited number of building blocks.

Introduction

How thecentral nervous systenClNS) coadinates alargaumber of musclet generate complex
motor behaviolis an open questioffhe dynamic complexity of the skeletal system with its many
degrees of freedom (DoF), the versatility of the motor system, capable of accomplishing many
different tags, and the redundancy and HAorearity of the muscular apparatus all pose challenging
control problems. A modular architecture has been proposed as a way in which the CNS might
tackle the complexity of motor control. In a modular architecture contsaldivided among basic
building blocks allowing for an efficient yet flexible task decompositiém.particular, a modular
generation of the muscle patterns might allow for a-dimvensional representation of the motor
output incorporatingknowledge on ta dynamic behavior ofhe musculoskeletal system into a
small set of basis functions shared across tasks and conditions. Recently, the modular control
hypothesis has been supported by the observation etliilmensionality in the muscle patterns
underlyinga variety of motor behaviors in different species. Using multidimensional decomposition
techniques such as principal component analysis (PCA), factor analysis (FA), andgatine

matrix factorization (NMF) it has been possible to reconstruct the mastilation patterns as the
combination of a small number of compone(iisesch et al., 2006Giszter et al., 20QTing and
McKay, 2007Bizzi et al., 2008resch and Jarc, 20Q@cquaniti et al., 20%8'Avella and

'manuscript  in preparation Authors: Marta Russh Mati a D 6 A rAtessandro Portodd Francesco
Lacquanitt?® A n d r e d. Aftlliatians: éllabdormtory of Neuromotor Physiology, Santa Lucia Foundation, Rome,
ltaly’Cent er of Space Bi omedi ci ne, Uni v e rBepattryent off SysiRrasme  fi 1
Medi ci ne, University of Rome fiTor Vergatabo, Ro me, It al
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Lacquaniti, 2018 These components may capture different featurgéiseomuscle patterns shared
across task conditions, such ggecific relationship in the strength ofactivation of groups of
muscles, i.e. muscle synergi€gresch et al., 199%ing and Macpherson, 20p®r M-modes
(Krishnamoorthy et al., 2003specific timecourses of the activation waveforms for all muscles,

i.e. temporal omponentglvanenko et al., 200Bominici et al., 201}, and specific collections of
muscle activation waveforms, i.e. timarying muscle synergigsl’Avella et al., 2008'Avella et

al., 200§ but they all construct muscle patterns by linear combinations of a small number of
generators. However, even if muscle patterns can be accurately described by such generators, task
accomplishment depends on the actual joint torques and the consequent joint motions produced by
muscle contractions. Thus, to better understand how motor tasks may be accomplished by the
combination of a few muscle pattern generators it is necessary $s #sseelationship between the
organization of muscle patterns and that of joint torques.

While joint torques underlying many different motor behaviors have been investigated extensively,
a characterization of their dimensionality with multidimensioredamposition approaches such as
those recently used to analyze muscle patterns is missing. Focusing on reaching movements in
vertical planes, as in many previous studi®sechting and Lacquaniti, 198lLacquaniti et al.,
1982Flanders et al., 1994landers et al., 199@'Avella et al., 2006d'Avella et al., 2008d'Avella

et al., 201}, our aim was to investigate the dimensionality of joint torques and to compare it with
the dimensionality of the muscle patterns. Moreover, we wanted to explore systiyngiea
dimensionality of different types of generators, i.e. generators capturing shared structure in the
spatiali across joints or musclestemporal, and spatiotemporal dimensions. Planar poipoint
reaching movements, for which joint torques caresigmated using a simplified dynamical model

of the arm with two joints, are normally associatecbédl-shaped velocityrofiles andbiphasic

torque profils(Morasso, 198Koechting and Lacquaniti, 1981The shape of such profiles is
invariant with respect tmmovementspeed(Soedtting and Lacquaniti, 198Xor load(Lacquaniti et

al., 1982 and the relationship between shoulder and elbow dynamic torques is alimeest
(Soechting and Lacquaniti, 19&ottlieb, 1997. These observations indicate that joint torques for
reachig have remarkable regularities suggesting that their dimensionality is also low. One might
hypothesize that there is a etweone relationship between muscle pattern generators and torque
generators. However, biomechanical characteristics and constraistsbm taken into account.

First, the muscular system is redundant, i.e. the same torque may be obtained by infinitely many
different muscle patterns and, consequently, the dimensionality of torques generators may be lower
than the dimensionality of musgattern generators. Moreover, as muscles can only pull, muscle
pattern generators are combined with -megative combination coefficients and, even considering

a linear muscho-torque mapping, to generate torques spannibgdanensional space at led3t

+ 1 nonnegative generators are requi@hvis, 1954vValero-Cuevas, 2009 Thus, the minimum
number of muscle pattern generatoepends on the actual dimensionality of the joint torque
required to perform all conditions of a specific task. Importantly, we consider here tasks whose
conditions can be described by a set of parameters, such as, for example, the position of a target of a
pointto-point reaching movement. Then, since the skeletal system is also redundant for the
performance of many tasks, e.g. a specific position of the wrist in space can be achieved with many
different joint angle configurations, the actual dimensionalitihe joint torques may be lower than

the number of joints (i.e. DoF) involved and it must be determined experimentally. Finally, while
the minimal number of muscle pattern generators might guarantee an optimal solution in terms of
computational complesy, it might be suboptimal in terms of other costs such as muscular effort. In
fact, the minimum effort muscle pattern for achieving a task typically requires independent
recruitment of all muscles, i.e. the maximum dimensionality.

We analyzd EMGs datarecorded from 16 muscles and kinematic data collected from markers
positioned on the arm of subjects performing fast reaching movements from one starting position to
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8 targets on the sagittal plane and 8 targets on the frontal plane. We used a dynahiaf ned

arm with 4 rotational joints (three at the shoulder and one at the elbow) and 3 translational DoF (the
position in space of the shoulder) to estimate joint torques from joint angles with an inverse
dynamics computatiofCorke, 199% We then considered the dynamic component of the torques,
i.e. thetotal torques with the gravitational components remadi@oktlieb, 1997, and the phasic
component of the muscle activity waveforms, i.e. the total rectified and filtered EMG waveforms
with the tonic, antgravity components removedFlanders and Herrmann, 1968Z2Avella et al.,

2006. Spatial, temporal, and spatiotemporal torque generators were identified by performing PCA
on different arangements of the data matrix. Similarly, spatial, temporal, and spatiotemporal
muscle pattern generators were identified with NMF. We first determined the dimensionality of
generators according either to a threshold on the fraction of data variatiomeglaesch et al.,
1999Ting and Macpherson, 200®rresOviedo et al., 200Roh et al., 201Por tothe detection of

a fAkneeo i n varikatien egplaineds a fucfion of the number of generatdidAvella

et al.,, 200heunget al., 200%'Avella et al., 2008 resch et al., 2006 We used the former
criterion for the torque data and the latter for the EMG data. However, to directly compare the
dimensionality of torques and muscle patterns, we then also used a single criterion which took into
account thelifferent intrinsic variability of the two datasets when determining their dimensionality
(Cheung et al., 2009

Materials and Methods

Participants, experimental apparatu s and task

Four right handed subjects (aged between 27 and 40) gave their written informed consent to
participate in the study, which conformed with the Declaration of Helsinki and had been approved
by the Ethical Review Board of the Santa Lucia Foundatidre experimental apparatus and
reaching task has been described in details in a previous (epdrella et al., 2006 Briefly,

standing subjects grigd with their right hand an handle (weight 180 g) which had a sphere
(diameter 4 cm) attached to one extremity. The center of sphere was aligned with the axis of the
forearm at a distance of 12 cm from center of the palm. Participants were instructedetthm

sphere between a central position and 8 targets uniformly arranged on a circle at 15 cm of distance
on either the frontal or sagittal plane while minimizing shoulder and wrist movements. The central
position was adjusted for each subject so thaéquired maintaining the upper arm vertical and
aligned to the trunk and the elbow flexed at 90°. The targets were indicated by transparent spheres
lighted from inside by an LED. In each trial, after holding the sphere at the start position for at least
1 s, subjects were instructed to move after a go signal, to reach the target with a movement of a
duration (defined as the interval in which the speed of the sphere was above 10% of its maximum)
shorter than 400 ms, and to hold there for at least 1 s. tessfal trials were repeated. Each
subject performed each movement successfully 5 times in different blocks of trials for a total of 160
pointto-point movements (2 planes x 8 targets x 2 directifsom the center to the target and from

the target baclotthe centerx 5 repetitions).

Data acquisition

The motion of the arm was recorded using an optic mtamking system (Optotrack 3020,
Nothern Digital, Waterloo, Ontario, Canada) with a sampling frequency of 120 Hz and spatial
resolution below 0.1mmActive optical markers were positioned on the shoulder (acromion), the
upper arm (at the proximal end close to the head of the humerus), the elbow (epicondyluslateralis),
the wrist (one over the styloid process the radius and one on the styloid prottessiioia). The

motion of the sphere on the handle (gruint) was recorded with an electromagnetiotion

tracking systemKastrak Polhemus, Calchester, VT) with sampling frequency of 120 Hz and spatial



resolution below 4 mm, as estimated by a calibrgti@mtess performed within the workspace used

in the experiment.

EMG activity was recorded with active bipolar surface electrodes (DE 2.1; Delsys, Boston,MA)
from the following muscles: biceps brachii, short head (BicShort), biceps brachii, long head
(BicLong), brachialis (Brac), pronator teres (PronTer), brachioradialis (BrRad), triceps brachii,
lateral head (TrLat), triceps brachii, long head (TrLong), triceps brachii, medial head (TrMed)
deltoid, anterior (DeltA), deltoid, middle (DeltM), deltoid, poster(DeltP), pectoralis major,
clavicular portion (PectClav), pectoralis major, lower portion (PectLow), trapezius superior
(TrapSup), trapezius middle (TrapMid), trapezius inferior (Trapinf), latissimusdorsi (LatDors), teres
major (TeresMaj), infraspinasu(InfraSp). EMG signal was baipass filtered (2€150 Hz) and
amplified (total gain 1000, Bagneli6, Delsys Inc.). EMG data were digitized at 1 KHz PCI
6035E, National Instruments, Austin, TX).

Data acquisition and experiment control were performed wor&station with custom software
written in LabView (National nstruments, Austin, TX). Faskadata were processed -bne to
compute the movement time and target accuracy and to provide auditory feedback about
unsuccessful trials. The experiment confpobgram logged the time of all relevant behavioral
events.

Data analysis

point kinematics

All analyses were performed with custom software written in Matlab (Mathworks, Natick, MA).
Position and orientation of the handle and the measured geopataimeters of the handle were
used to compute the position of the guaint. The data were lopassfiltered (FIR filter; 15 H

cutoff; zerephase distortion; Matlab firl and filtfilt functions) and differentiated to compute
tangential velocity and speeHor each movement we computed treset timeand theend time

defined respectively as the time in which the speed profile crossed 10% of its maximum value, and
the movement duratioMT), defined as the interval between the movement onset and the
movemenend.

Arm model
A kinematic and kinetic model of the arm, incorporating geometrical and inertial parameters of the
upper arm and forearm segments, was used to estimate joint angles and joint torques from the
recorded spatial position of the shoulder, the elbow, and tls mvarkers. The kinematic model
was developed using the DenaMiartenberg (BH) notation(Hartenberg and Denavit, 1965.e. as
chain of articulated links with four parameters &ach link &: length,U :twist, d: offset,* : joint
angle) describing the position and orientation of a Cartesian reference frame fixed on each link with
respect to the reference frame fixed on the preceding link of the chain according to the 4 x 4
homogerous transformation matrik

gcos/ - sinJcosa sin Bin aa cos

Ssing COsSgcos a - Ccos @gin a sin

T=¢
e 0 sina cosa d
&0 0 0 1

(1)

The rotation axis of each joint coincides with #eis of the preceding link in the chain. Thaxis
in each frame is directed as the normal betweerz thes of that frame and theaxis of the next
frame. In this way the joint angle is the angle betweerxtares of the frames of the two links
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connected by the joint. We modeledr rotational degreesf-freedom (DOFs) of the armthree

rotations at the shoulder, i.e. adduction, flexaowl external rotation, and one rotation at the elbow,

i.e. elbow flexion ¢ee Figure L a rthdee translational DOFs of the shoulder. We assumed that
shoulder was a spherical joint (i.e. the rotation axes of the three joints intersect at a single point).
Lengthsof upper arm, forearm, and hand of each subject were estimated as a function of the
subjectdés weight and hei gHhWintes A99@® Fodearm,chantl, andr e g r
handle were considered a sintjtek (7"") of length equal to the sum of the forearm length and the
length of the opened hand, thus approximating the total length of the closed hand and the handle
along the direction of the forearm axis with the length of the opened hand.

Shoulder external
rotation

/
Elbow
flexion

Figure 1. Joint angle definition for the arm model. The four joint angles included in the model
(shoulder adduction, shoulder flexion, shoulder external rotation, and elbow flexion) are illustrated
by a sequence of postures in space of alitmkoarm.

The kinetic madel of the arm was developed adding to each link its inertial parameters (mass, center
of mass, inertia tensor) al so estimated as a
regressiorequation§Zatsiorsky and Seluyanov, 1983No mass was associated to the first three

links required to represent the spatial position of the shoulderetHawthese translational DOFs

were introduced to take into account shoulder movements when estimating the joint torques. The
mass of the upper arm was assigned to thén&, which had an offset equal to the length of the
upper arm segment. The masstioé forearm, hand, and handle was assigned to think,
associated with the elbow flexion. The inertial parameters for this link were computed from the
inertial parameters estimated separately from the regression equations for the forearm and hand. As
the estimated position of the center of mass of the hand and of the handle coincided, the mass of the
handle (180 g) was summed to the mass of the hand. The moments of inertia were computed with
respect to its center of mass. The model was implementedailalMusing the Robotic Toolbox
(Corke, 1998Corke, 201). The DH parameters of the generic arm model are reported in Table 1
and the specific geometric and inertial parameters estimatezhd¢br subjecare reported in Table

2.

Table 1. D-H parameters for the 7 DOFsarm model.Sh: shoulder, El: elbow, £ forearm link
length, Ly: upper arm link length; P is for prismatic joints and R is for revolute joints.

Link | DOF U |a |[d |d [Type]| Offset
1 Sh X /|10 |" /|0 |P 0
2 Shy “/{o | /|10 [P 0
3 Shz /|0 |" /|0 |P 0
4 Shadduction | " /|0 |0 0 R -2
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5 Sh flexion /{0 |O |O |R ] 2

6 Sh external” /|0 |0 Ly | R ’
rotation

7 El flexion 0 L-| O 0 |R "l 2

Table 2 Arm model parameters for individual subjectsU: upper arm length, F: forearm length
(including hand and handle), rU: position of the upper arm ceferass along the link x axis,

rF: position of the upper arm centgrmass along the linrk x axis, I(lo) U, inertia along the
longitudinal axis othe upper arm, I(ap) U, inertia along the anfeosterior axis of the upper arm,

I(tr) U, inertia along the trasversal axis of the upper arm, I(lo) F, inertia along the longitudinal axis
of the forearm+hand+handle system, I(ap) F, inertia along the gmsterior axis of the
forearm+hand+handle system, I(tr) F, inertia along the trasversal axis of the forearm+hand+handle
system

Subject 1 2 3 4
Height (cm) 180 162 177 181
Weight (Kg) 84 58 75 78

Ly (cm) 33.48 [ 30.13 [ 32.92 | 33.67
Le (cm) 45.36 | 40.82 [ 44.60 | 45.61
rU (cm) 13.91 [ 12.16 | 13.48 [ 13.78
rF (cm) 26.38 | 23.57 | 25.83 | 26.39
My (kg) 229 [156 [203 [2.11
Me (kg) 200 [152 [1.84 [1.90
I(lo) U (kg cm®s?) | 46.54 | 28.54 | 40.45 | 42.61
I(ap) U (kg cm’ s?) | 137.84| 74.02 | 120.09| 130.03
I(tr) U (kg cm?s?) | 152.50| 84.74 | 133.92| 144.65
I(lo) F (kgcm®s? |[21.91 |[12.93 | 18.63 | 19.56
I(ap) F (kg cm’s?) | 465.00| 295.87| 416.54| 445.74
I(tr) F (kg cm?s?) | 475.79| 302.27| 425.77| 455.45

Joints kinematics

The arm model was used tdigsate at each time sample thleoulder adduction angle, the shoulder
flexion angle, the shoulder external rotation angle, the elbow flexion angle using the positions of the
shoulder and elbow markers and the mean position between the two wrist markers. For time sample
and each joint agle, a vector between two markers aligned with the axis of the limb segment
defining the rotation of that joint (i.e. shoulder and elbow markers for shoulder adduction and
shoulder flexion, elbow and wrist markers for shoulder external rotation and éipown) was
computed first. Then, the segment vector was transformed into the reference frame associated to the
joint and the angle computed as

— -1
J, =tan~ (y /x) 2)
wherex andy are the coordinate of the vector in the reference frame assbevéte the joint
rotation axis £ axis). To compensate for potential misalignment between the traelkes and the
vertical axis, the coordinates of the markers were first rotated into a Cartesian reference frame with
the gravitational acceleration alotige z axis. The direction of the gravitational acceleration was
estimated by means of a calibration of based on tracking two markers attached to the fulcrum and
the extremity of a pendulum.
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Angular velocity and acceleration were computed by numericérdiftiation. To validate the
kinematic model, forward kinematics was used to compare estimated and measupsiniend
trajectories.

Inverse dynamics
Joint angles, joint velocities and joint accelerations were used to estimate the torque profiles via
reaursive NewtorEuler calculation rfe function of Matlab Robotics Toolbox). We computed the

total torques) )
U= M 3 & ( C)a# a9 ©)

whereM is the manipulator inertia matrix; is the Coriolis and centripetal torque, a@ds the
gravitational torques. To estimate Rgravitational (dynamic) torques we subtracted gravitational
torgues from the total torques.

Data preprocessing

The EMGs for each trial were digitally fulbave rectified, lowpass filtered (FIR filter, 20 Heut

off, zerophase distortion, Matldipl andfiltfilt functions), and integrated over 10 ms intervals. In

a few cases muscle waveforms showed some artifacts, possibly due to a partial detachment of the
electrode from the skin, and those muscles wer@vethfrom further analysisubject 1: PectLow;
subject 2: Traplinf, PectLow).

EMGs and torques for all the trials in each experimental condition (2 planes x 8 targets x 2
directions) were aligned on the time of movement onset and averaged.

Finally, bothtorquesand muscle waveformsere normalized in timé equal movement duration

and resampled with 50 samples per movement duration (MT). Samples from 0.5 MT before
movement onset to 0.5 MT after movement end (total 100 samples) were considered for further
analysis.

Dimensionality of motor commands

We consider a set @ command signals (joint torques muscle patterns) delivered byantroller

in a given time interval (samplédtimes) to accomplish a task in onekoflistinct task conditions

(e.g. different reaching targets). We hypothesize that a modular controller generates these command
signals by modulating and combining a small set of generators whose structure is invariant across
all task conditions. The structiof such generators may be defined in the spatial (across signals,
i.e. muscles or joints), temporal, and spatiotemporal domains. The dimensionality of the ensemble
of command signals is then simply the number of generators necessary to accomglisiskd
conditions.

Spatial dimensionality is the number of generators necessary to capture-invagant
relationships between the signals. Nogenerators:

FO=ZOW, @

where Xk(t) are the set of signals for conditidn i.e. a vectowvalued D-dimensional) function
time (or aD x T matrix for discrete time samples():(t) is a conditiordependent, tim&arying

combination coefficient for the-th generatorw, is the conditiorindependent, timévariantn-

thspatial generator, i.e.xdimensional vector capturing the relative activation weight of different
signals.
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Temporal dimensionality is the number of generators necessary to cagamporal components
shared across all signals (i.e. spasariant). ForN generators:

N
x“(t) =& c,(Hw, (5)

where x*(t) are again the set of signals for conditionc, (t) is the conditiorindependent, time

varying n-th generator (or temporal componem)ﬁ is the conditiordependent, timévariantn-

thD-dimensional weight vector for theth component. Notice how the critical difference in the
definition of spatial and temporal generators and dimensionality is in the dependence on the task
condition k). Indeed, generators are useful concepts only if they can be used for a variety of
conditions thus allowing an effective reduction of the numberavhipeters to select for each
condition.

Spatiotemporal dimensionality is the number of generators capturing simultaneously invariant
spatial and temporal features in the signals. Thus, each generator includes a set of signal
components that can be expressed as awangng vector. FON generators

X“(t) =& a, v, (1) (6)
n=1

where a“ is a conditiordependent combination coefficient for thith generatory, (t) is the nth

spatiotemporal generator, i.e. a conditindependent, tim@arying D-dimensional vector (or
x T matrix for discrete time samples). However, as different signals may be related synchronously
or asynchronously, we can distinguish the casynthronouspatiotemporal generators:

v, (1) =c,(Ow, )
in which each generatol(t) can be expressed as the product of a scalar function ofcitte

times a timenvariant weight vectorW,. In contrast, asynchronous spatiotemporal generators
cannot in general biactorized into separate spatial and temporal generators.

In addition to being scaled in amplitude, spatiotemporal generators may also be recruited at
different times across task conditions, i.e. they may also siawiance for time shif(sl'Avella et
al., 2003d'Avella et al., 200p If we assume that the duration of each spatiotemporal generator is

smaller than the duration of the signals, we can incorporate condémendent onset timé$ into
Eq. 6:

N
X“(=aayva(t t) ®.
n=1

Identification of generators and their dimensionality

To investigate the spatial, temporal, and spatiotemporal dimensionality of joint torques and muscle
patterns we used multidimensional decomposition technitpuedentify the different types of
generators. We considered the dynamic component of the torques and the phasic component of the
muscle activity waveforms. We then used PCA to identify torque generators and, because of the
inherent nomegativity of musa@ activity, we used NMF to identify muscle pattern generators.
Finally, as discussed below, we selected the number of generators with three different criteria, two
specific for each dataset and one for both datasets.
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Dynamic torques and phasic muscle patrns. Reaching movements in vertical planequire
torques and muscle activitiesto accelerate and decelerate the limio dradance gravitational
forces.In this work we focused on the former components, i.e. dynamic torques and phasic muscle
patterns.Dynamic torques were computed as the total torques with the gravitational components
(the last term of the right hand side of Equationr@&noved (Gottlieb, 1997. Flanders and
collaborators(Flanders and Herrmann, 199®und that it is possible to distinguish tiplasic
component (related to the movement) from the tonic one (related to maintain a specific posture of
the arm) of an EMG signal. As (d'Avella et al., P06) we used a subtraction procedure to remove

the tonic component, i.e. we subtracted a constant muscle activation level before and after the
movement and a linear ramp between the two constant values during the mo®&nuendéter the
subtractiona small fraction ofEMG samplesassumd negative valuesindicating that the phasic

EMG activity was lower than the tonic activity. However,order touse theNMF algorithm we

set to zero all negative values (ratio of negative area over total areanafisales, 0.10 £ 0.03,

mean = SD over subjects).

Data matricesTo identify spatial, temporal, and spatiotemporal generators, joint torque and muscle
patters data, after pprocessing, were organized into three different data matrices that were
factorized by either PCA (torques) or NMF (muscle patterns). For each subjects we identified
generators fronKtask conditiongK = 32, except for subject 3 farhich we had to exclude
conditionson the frontal @ne and 2 on the sagittal plabecause omissing dé from the arm
markers used to compute joint anglds) identify spatial generators, the data for each condifion (
signals, EMG or torque, times T samples, with= 100 after time normalization and resampling,
see Figure 2) were arranged into a data matmth D row andT x K coumns which was
factorized, according to Equation 4 in matrix notationXas W C, wher&V is the condition
independent synergy matrix with rows andN columns,N number of generators, ar@ is the

matrix of condition and timedependent combination coefficients withrows andT x K coumns.

For temporal generators, in contrast, the data matrix was constructed by arranging the waveforms
from al signals in all conditions as columns, iX.had T rows andDx K columns, and it was
factorized, according to Equation 5 in matrix notationXas C W, with C is the condition
independent matrix of temporal components, wWittows andN columns, andV is the condition

and signaddependent matrix of weights, with N rows arfdx K columns. Finally, for
spatiotemporal generators, the data samples for all signals of each conditions were arranged in a
column and the data matriX, with Dx T rows andK columns was factorized, according to
Equation 6 in matrix form, a¥X =V A, with Vconditionindependent matrix of timearying
synergies withDx T rows andN columns andA conditiondependent matrix of combination
coefficients withN rows andK columns. For joint torque generators, the covariance of the data
matrix was computed and, for eadhthe firstN principal components (extracted using MATLAB
pcacov function) were considered. For muscle pattern generators, foNe@chnd W matrices

were initialized randomly and the best solution out of 20 runs of the NMF algorithm was selected.
Each run of the iterative algorithm was terminated when the reconstructiorcri@ased in one
iteration by less than Ifor 5 consecutive iterations.

Selection ofthe number of generators.For torque generators, veelected the number as the
minimum number which explained aast 90% of the data variation (VAF Bf, defined as 1
SSE/SST, with SSE sum of square residuals of the data reconstiugtibe generators, and SST

sum of the squared residuals of the data with respect to the mean over the rows of the data matrix
Such cri’thresho(d@&) has been frequenf({Tteschatsed
al., 1999Ting and Macpherson, 2000rresOviedo et al.,, 200Koh et al., 201 even if
sometimes with a different definition (i.e. with SST defined as the sum of the squared data, see
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(Delis et al., 2018. Such criterion is based on the assumption that the fraction of data variation
unexplained is due to noisad the thresholts supposed to separate structured variation due to the
combination of generators and noise. However, if an independent estimation of the noise level is not
available the choice of such threshold is necessarilyoad An alternative approach, also used in
previous studiegd'Avella et al., 200 heung et al., 200%resch et al., 2006 that we used for
selecting the number of muscle pattern generators s thé ect i on of a Résmeeod
functi on of the number of’kgeeé)atreds esSwahtdhri
noise isisotropic, i.e. contributes equally to all dimensions, and does not depend on a specific
assumption of the relative level of noise. To detect a change in slope iA¢hev®, for eaciN, we
performed dinearfit of the portion of the curve froml to the end (i.eD) and we selectel for

which themean square erraf the fit was<10*, indicating that the nt
i kK n e e essentially straightWe could not use this second criterion for the torques as the their
maximum spat a | di mension (4) was too |l ow and it we

procedure. However, to compare torque and muscle pattern with the same criterion, we also
determined their di medshwhfal éd)y whuatthe differerkt i it et
intrinsic noise levels of the two datasets. We thenausereshold on the slope of tiécurve
according to slope of the curve obtained atierandom shuffling the rows of the data matrix
(Cheung et al., 2009By shuffling the data the multidimensional structure of the original data was
lost but each dimension maintained the original variability. Thus,selectedthe number of
generators as the poion the original B curve at which any further increase in the number of
extracted generatorgeldedan R increase smaller than 75% of tHat the generators extracted

from the shuffled data (mean over 50 extractions from reshuffled data).
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Figure 2. Types of multidimensional decomposition of data from different task conditions.
Datacollected fromD channels (4 in this schematic illustration, represented by different patterns)
over T time samples (6, represented by different color saturations) in ke sagk condition are
represented by a grid of squares. Different task conditions are represented with different
background colors. A spatial decomposition is obtained by factorizing the data matrix obtained by
stacking the data from individual conditiohsrizontally (i.e. matching their spatiathannels
dimension) into a matrix dfi(3) spatial generatoré(rows andN columns) times a matrix of time

and conditiordependent coefficients. A temporal decomposition is obtained by factorizing the
transpose fodata matrix obtained by stacking the data from individual conditions vertically (i.e.
matching their temporal dimension) into a matrixdf(3) temporal generatord (rows andN
columns) times a matrix of channahd conditiordependent coefficients. Finally, a spatiotemporal
decomposition is obtained by arranging all the data samples of each condition into a column and
factorizing the resulting matrix into a matrix Nf(3) spaiotemporal generator®(x T rows and N
columns) times a matrix of conditiafependent coefficients.

Results

Dynamic torques

Joint torques were estimated by inverse dynamics from joint angle trajectories using a kinetic model
of the arm parametrized lilie height and weight of each subjdeéigure 3 showsan example of

end pointtrajectories, end poinspeedprofiles joint angletrajectories, angular velocitiegnd
gravitational and dynamiint torque profiledor 8 centerout movements on the fromgalane. As
expected, end point trajectories were straight and velocity profilesshmghed. Joint angle
trajectories and the corresponding angular velocities were modulated by movement direction.
Dynamic torques, i.e. total torque with the gravitatiot@iques removed, werbi-phasi¢ as
observed beforéGottlieb, 1997. The time courses of the joint angle trajectories and angular
velocities were different across joints and conditions but, because of the dynamic interaction
between the different degreektfreedom, did not need to be generated by asynchronous torque
profiles and, in fact, they were generated by a synchronous biphasic pulse of torque distributed
across joints with different balances depending on the movement direction. Such coordination
paterns in the dynamic torque profiles is clearly visible in a scatter plot of a pair of joint torques.
Figure 4 shows the six scatter plots of all pairs of joint torque profiles, during an interval of 250 ms
around movement onset, approximately capturirgy first phase of the profile, for the same 8
movements of Figure 3. If a pairs of torques were modulated synchronously, the corresponding
trajectory in the scatter plot would appear as a straight line segment with a direction depending on
the relative amjptude. Indeed, for most pairs and movement directions dynamic torques appeared
to be modulated close to synchronously, especially in the initial (raising) portion of the profile.
Finally, for two pairs of dynamic torques, shoulder external rotegiwmulder adduction and elbow
flexion-shoulder fexion, the direction of the line segment in the scatter plot depended only weakly
on the movement direction, suggesting that the dynamic torques were spanning a subspace of the
four dimensional torque space orthagb to those two directions. We then generalized these
observations by identifying dynamic torque generators and estimating their dimensionality.
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Spatial dimensionality

We first assessed the spatial dimensionality of the dynamic torques by identifying spatial
generators, i.e. vectors in the torque space capturing specific balances of torque magnitude which
could recostruct the data once multiplied by timand conditiordependent coefficients (see
Materials and Methods and Figure 2), using PCA. For each subject, the number of generators was
selected as the minimum number for which the fraction of data variation reegblexceeded 0.9

(Rt hresholdo criterion) and as the number of
increased th&? value less than 75% of the meah \Rlues obtained identifying generators from
shuf fl e@s hduaftfal e(of Rc reantdienensionalily acro3stsubjects was 2.25 according

to theR?threshold criterion and 2.75 according to tHfesRuffle criterion (see Table 3 for individual
values). The maximum potential spatial dimensionality of the torques was 4, corresponding to the
number of joints, i.e. the number rows of the data matrix used for spatial decomposition (Figure 2).

Figure5A showstheR? valueas a function of the number of generators for subjectdFigure 5B

the threespatial generators dhe samesubjectselecte according to the ®huffle criterion. The

first generator\;) is dominated by shoulder flexion torque. The second genevafpcdmbines a

large shoulder adduction torque with a smaller shoulder internal rotation (i.e. negative external
rotation) and Bow extension (i.e. negative elbow flexion). Finally, the third generataj (
represents a large elbow flexion torque and a smaller shoulder adduction torque. Notably, none of
the generators or their combinations can generate coordinated shoulderoaddadtishoulder
external rotation torques, i.e. the direction orthogonal to the torques direction observed in the
corresponding scatter plot of Figure 4. Thus, the structure of the spatial generators indicated that
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such torque coordination pattern was mey&ed to perform reaching movements in the frontal and
sagittal planes.
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Figure 5.Spatial decomposition of dynamic torque#\: R? curve for subject 1 obtained by spatial
decomposition using PCA: Three spatial generators selected for subje@:Example of the
reconstructions of the dynamic torques for six movement conditions of subject 1 obtained with the
generators illustrated in panel Bh@ded areaoriginal datathick line reconstructed datéottom
time-varying combination coefficients).
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Figure5C illustratesanexample othereconstruction of theynamictorqueprofiles of subject 1 in

six different conditions by the combinationof the threespatial generatorsf Figure 5B The
dynamic torques for the first two conditions, medial ateréd movements in the frontal plane, are
generated by a comparable level of activation of all three generators wHbhadic activation of
shoulder adduction and internal rotation followed by shoulder abduction and external rotation for
the medial moveent and the opposite order for the lateral movement captured mainly by the
activation of the second generation with similarpbasic profiles but opposite signs of its
combination coefficient (. The last two conditions, backward and forward movemientbe
sagittal plane, require large shoulder flexion/extension torques that are generatedghasidi
activation of the first generator, captured by the first twarying coefficient (¢).

To assess the similarity between the subspaces spannieel fpgrterators identified in each subject
we reconstructed all dynamic torques of each subject with the generators of all silgjeletd.
showsthe R? values obtainedsing the number of generators determined according to’tsleuffle
criterion (see Tde 3). The mean Rvalue for the reconstruction of the data of each subject by the
generators extracted from the other subjects (0.96 + 0.04, meannt=SI2) was close to the mean

R? value of the reconstruction of the data of each subject by the gensezatracted from the same
data (0.98 = 0.02n = 4), indicating that the dynamic torques of the different subjects shared a
similar spatial organization.

Table 3 Comparison of different types of dimensionality of dynamic torques and phasic muscle
patterns estimated according to three criteria for the selection of the number of generators.

Torques Muscle patterns
Subject | Criterion Spatial | Temporal | Spatiotemporal | Spatial | Temporal | Spatiotemporal
R’ threshold 2 1 3 - - -
S1 R’ knee - 5 - 4 5 5
R’ shuffle 3 1 3 4 4 7
R? threshold 3 1 3 - - X
S2 R’ knee - - - 5 5 6
R? shuffle 3 1 3 5 4 7
R? threshold 2 1 3 - - -
S3 R’ knee - - - 6 4 6
R” shuffle 3 1 3 6 3 7
R? threshold 2 1 2 - - X
S4 R’ knee - - - 5 4 5
R? shuffle 2 1 2 5 4 8

Table 4 R? for the reconstruction of the data of each subject with the generators identified in all
subjects.

Generators/Dat§ S1 | S2 | S3 | S4
Spatial S1 0.99] 0.99| 0.98]| 0.99
S2 0.99| 0.99| 0.97| 0.99
S3 0.99| 0.98| 0.99]| 0.99
S4 0.92] 0.90| 0.88] 0.95
Temporal S1 0.95| 0.92| 0.92| 0.93
S2 0.94] 0.93]| 0.94| 0.93
S3 0.91] 0.92]| 0.94]| 0.92
S4 0.94| 0.92]| 0.93]| 0.93
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Spatiotempral | S 1 0.97| 0.92]| 0.90| 0.94
S2 0.94| 0.95| 0.92| 0.93
S3 0.90| 0.89| 0.96| 0.92
S4 0.88|0.84| 0.82| 0.91

Table 5 R? for the reconstruction of the data of each subject with themuscle pattern
generators identified in all subjects.

Generators/Dat§ S1 | S2 | S3 | S4
Spatial S1 0.80| 0.60| 0.54| 0.62
S2 0.64| 0.74| 0.61| 0.70
S3 0.67| 0.71| 0.80| 0.69
S4 0.73| 0.75]| 0.60| 0.85
Temporal S1 0.88| 0.83| 0.88| 0.83
S2 0.85| 0.86| 0.88| 0.85
S3 0.81|0.79| 0.86| 0.79
S4 0.77| 0.78| 0.83| 0.81
Spatiotempral | S 1 0.84] 0.30| 0.27| 0.32
S2 0.37|0.77| 0.41| 0.51
S3 0.25/0.41| 0.79| 0.36
S4 0.38| 0.49| 0.39| 0.80

Temporal dimensionality

To identify generators of the temporal organization of dynamic torques we performed PCA on the
collection of the torque profiles of all joints and conditions. The resulting temporal components
were then waveforms with the same duration as ttrque profiles and each profile was
reconstructed by multiplying the component matrix by a weight specific for that joint and condition.
The dimensionality was 1 for all subjects and for both criteria (see Table 3). In contrast, the
maximum potential t@poral dimensionality of the torques was 100, corresponding to the number
of time samples after timeormalization and resampling fror.5 MT before movement onset and

0.5 MT after movement end, i.e. the number of rows of the data matrix used for temporal
decomposition (Figure 2).

Figure 6Aillustrates the Reurve for the temporal decomposition up to 12 generators for subject 1
and Figure 6B the single temporatomponentidentified in this subjecand representative of all
subjects,clearly showing a bphasic profile. Figure 6C illustrates the reconstruction of the joint
torques for the same six conditions of Figure 5C by the temporal generator. The torque profiles for
each condition are reconstructed multiplying the single tempmalponent (9 by a single
conditiondependent weight vectow(). With respect to the reconstruction with spatial generators,

the weight vector, which has the same dimensions of a spatial generator, is now modulated by the
movement. For example the oppessigns in the bphasic profiles of shoulder adduction and
external rotation for medial and lateral movements and for shoulder flexion for backward and
forward movements are obtained by opposite signs of the components of the weight vector.
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Finally, the temporal generatsrwere alssimilar across all subjecté\s for spatialgeneratrs, the
reconstruction ofhe data of eachubject bythe generatorsf all other subjects had a meah(B.93

+ 0.01) which was comparable with the meanfd® the reconstruction of the data of each subject
by the generator extracted from the same dag(+ 0.01).

Spatiotemporal dimensionality

Spatiotemporaienerators, which can be viewed as eithee-varying vectorsapturing a different

spatial coordination among torques at each time or as collections of different waveforms for each
torque, weradentified by PCA on a data matrix obtained arranging all time samples from all joints

in a single row for each movement condition. Thus, torque samples from different joints and times
represented different dimensions and the possibility of generatinglatae with a number of
generators smaller than the maximum potential dimension (400, corresponding to the number of
joints times the number of samples) revealed a coordination in the activation of different joints at
different times. Once a set of spatiofgoral generators are identified, the data are reconstructed by
multiplying each generator by a single conditigpendent coefficient (see Figure 2). Thus the
spatiotemporal decomposition provides a potentially very compact representation of the structure
inherent in the data. The mean spatiotemporal dimensionality across subjects was 2.75 according to
both criteria (see Table 3 for individual values). Notably, mean spatial and spatiotemporal
dimensionalities were very close and even equal for each suidject considering the Rshuffle
criterion. Moreover, as the temporal dimensionality was 1, the spatiotemporal dimensionality was
essentially the product of the spatial and the temporal dimensionalities.

Figure 7Aillustrates the Recurve for the spatioteporal decomposition up to 12 generators and
Figure 7B the three spatiotemporatomponentfor subject 1. Comparing the structure of these
generators with that of the spatial (Figure 5B) and temporal (Figure 6B) generators of the same
subject, it is appareérmow each spatiotemporal generator is the product of a spatial generator by a
temporal one. Indeed, the activation waveforms of all spatiotemporal generators are approximately
synchronous and similar to the waveform of the single temporal generatoe F{gultustrates the
reconstruction of the joint torques for the same six conditions of Figure 5C and 6C. The torque
profiles for each condition are reconstructed multiplying each spatiotemporal component by a single
conditiondependent coefficientc)), represented by the height of the rectangle below the torque
profiles. With respect to the reconstruction with spatial and temporal generators, movements
requiring torque profiles with opposite signs are generated simply by changing the sign in a single
combnation coefficient, e.g.for medial and lateral movements andar backward and forward
movements.
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As in previous casespatiotemporal generators wesienilar acrossubjects.Themean“Ralue for

the reconstruction othe data of eachubject bythe generatorf all other subjects (0.90 + 0.04)
was close to the mean®Ror the reconstruction of the data of each subject by the generator
extracted from the same data (0.95 + 0.02).

Muscle patterns

Phaic muscle patterns, obtained by subtracting the-gaatiity (tonic) components from the
rectified, filtered, averaged, timeormalized, and resampled EMG waveforms, were decomposed
with NMF to assess their dimensionality. Phasic muscle patterns foretdting movements in
vertical planes have been described befdi&vella et al., 2006 In contrast to our previous study,

here we identified spatial gerators, temporal generators, and spatiotemporal generators without
onset delays and we compared their dimensionality with the dimensionality of the corresponding
generators of dynamic torques.

Spatial dimensionality

The mean spatial dimensionality of thkasic muscle patterns across subjects was 5 according to
the position of change in slope of thé &irve as a function of the number of generatofsk(iee
criterion) and 5 according to the’ Bhuffle criterion (see Table 3 for individual values). Thass,
expected, the dimensionality of the muscle pattern generator was larger than the number of spatial
torque generators (2.75 according $Ruffle criterion) as muscle pattern generators could only be
combined with nomegative timeand conditiordependencombination coefficients. However, the
number of muscle pattern generators was larger than the minimum required for generating a space
of the same number of linear dimensions as the torque generat@& By nonnegative
combinations (3.75 = 2.75 + 1).

Figure 8A shows the Reurve for the spatial decomposition of the phasic muscle patterns of subject
1, in which a knee at 4 generators is clearly visible. The loWeaRe at the selected number of
muscle patterns generators (0.80th respect to theorresponding value for the torque generators
(0.99) indicated that a much larger fraction of the muscle data variation was due to noise. The four
spatial generators (or tirievariant muscle synergies) for the same subject illustrated in Figure 8B
(w1 T wy) show specific groupings of muscles spanning multiple joints and with the same muscle
recruited by multiple generators. Finally, in Figure 8C the examples of the reconstruction of the
phasic muscle patterns for six movement conditions by the combirmdtiba spatial generators are
presented. The temporal structure of muscle patterns and of combination coefficients is clearly more
complex than that of the spatial generators with thphasic organization of the muscle patterns
generated by both thenporal structure of the combination coefficients and by the superposition of
different generators.

Finally the spatial generators for the muscle patterns were less similar across subjects than the
spatial generators for the torques (see Table 5). Thastuootion of the data of each subject by the
generators of all other subjects hachaanR (0.66+ 0.06) much lower than the mean fr the
reconstruction by the generators extracted from the same data @.@9).
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Figure 8.Spatial decomposition ofphasic muscle patterngA: R? curve for subject 1 obtained by
spatial decomposition using NMB: Fourspatial generators selected for subjed€1Example of
the reconstructions of the muscle patterns for six movement conditions of subject 1 obtained with
the generators illustrated in panel 8h&ded areaoriginal data,thick line reconstructed data,

bottom time-varying combination coefficients).
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Temporal dimensionality

The mean number of temporal generators of the phasic muscle patterns ae#dfg to the R

knee criterion and 3.75 according to thesRuffle criterion (see Table 3 for individual values). As

for the spatial generators, the temporal dimensionality of the muscle pattern generators was larger
than the minimum number required generate a space with the same linear dimensions as the
number of temporal torque generators (1) by-negative combinations (2 =1 + 1).

Figure 9A shows the Rcurve for the temporal decomposition of the phasic muscle patterns of
subject 1 and FigureBthe four temporal generators (or components) selected in that subject
according to both criteria. The first three generators capture a single burst of muscle activity and the
fourth component a small burst followed by a larger burst. The four compgreaksat different

times and thus they appear to capture four distinct phases of the muscle patterns observed in
different directions. However, the examples of muscle pattern reconstructions and combination
weights for six movement directions (Figure 9Cpwhthat in many cases the weight vectors
loading the different components were similar within each movement condition (e.g. for the first
two components of the (medial)lateral and downward movements), suggesting that such temporal
decomposition was necesgdo capture not only the major changes in the muscle patterns over the
duration of the movement but also small asynchronous adjustments.

In contrast to the spatial generators but similarly to the temporal generators for torques, muscle
pattern temporalgenerators were similar across all subjects. The mearvaRie for the
reconstruction of the data of each subject by generators of all other subjects 82 was close

to the mean value for the reconstruction by the generators extracted from ¢heéadar(0.850.03).
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Figure 9.Temporal decomposition of phasic muscle patternd: R® curve for subject 1 obtained
by temporal decomposition using NMB: The four temporal generators selected for subje€Ct 1.
Example of the reconstructions of muscle @ai$ for six movement conditions of subject 1
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