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Abstract 
 
The following document repots the findings from the work on the constraints, characteristics, and 

representation of motor primitives in human participants. Section 1 of the deliverable concerns the 

biomechanical and cognitive characteristics to motor primitives. Specifically, the work of the SLF 

group concerns the biomechanical characteristics of motor primitives relating to the dimensionality 

of torque and muscle patterns, estimation of forces associated with muscle synergies, and the 

biomechanical constraints on locomotion. In addition, two studies from the UniTu are reported. The 

first study investigates the EMG activity of well-understood motor tasks (elbow flexions and 

extensions), aiming at the clarification of motor features which can be characterized by different 

kinds of muscle synergies. The second study investigates how walking and reaching are coordinated 

using a novel experimental paradigm and presenting a new method for the extraction of kinematic 

primitives. Additionally, the work of the UniBi group is presented relating to the identification and 

classification of cognitive primitives over the course of motor learning, the influence of instruction 

type on the development of cognitive primitives, the overlap between primitives on a cognitive and 

motor level, and finally the constraint of anticipation on movement sequencing. In Section 2 of the 

deliverable, the interaction of complex action with cognitive processes in the anticipation of 

perceptual action effects and goals is explored. First, the work of the UniBi group is presented. This 

work covers the findings from a series of studies that investigate the overlap between long-term and 

working memory processes involving grasping postures. Next, the influence of anticipation on 

priming domain relevant knowledge representations is explored. Following, the work of the UniTu 

group is presented. Building off of the locomotion and grasping work conducted by the UniBi 

group (Land, Rosenbaum, Seegelke, & Schack, 2013), UniTu examines a novel way to model the 

locomotion and goal-directed grasping actions captured from the MOCAP data of humans.  
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1 Biomechanical and Cognitive Characteristics of Motor Primitives 
Section 1 of the deliverable concerns the biomechanical and cognitive characteristics and 

constraints to motor primitives. First, the work of the SLF group is presented. This work covers the 

findings from a series of studies that investigate the biomechanical characteristics of motor 

primitives relating to locomotion and arm control. Following, the work of the UniTu group is 

presented, which investigates the potential physiological meaning of motor primitives associated 

with simple and complex, multi-goal movements. Finally, the work of the UniBi group is presented 

which covers the cognitive characteristics of the development of motor primitives. In doing so, a 

new method for examining the overlap between cognitive and motor primitives is proposed. Finally, 

the constraints on movement sequencing deriving from anticipation are presented. 

1.1 Biomechanical characteristics of motor primitives (SLF) 

1.1.1 General introduction 
 

Motor primitives as muscle synergies or temporal components, identified from electromyographic 

signal recorded during many different motor skills (see Deliverables 1.1, 1.2, and 1.3), generate 

forces and movements through a complex musculoskeletal apparatus. The relationships between the 

nature and the characteristics of motor primitives at the neuromuscular levels and the biomechanical 

characteristics and constraints of the human musculoskeletal system is central issue in the study of 

modular organization of human motor control.  The SLF group has investigated the biomechanical 

characteristics of motor primitive underlying both the control of arm and locomotion.  

 

A key characteristic of the modular architecture involved in the control of a motor skill is the 

number of motor primitives required for generating the motor commands which can be inferred 

from the dimensionality of the recorded muscle patterns. As muscles can only pull, a fundamental 

biomechanical characteristic imposing a non-negativity constraint onto the modulation of torques 

and end-point forces, a minimum of N + 1 primitives at the muscle level are required to generate N-

dimensional forces and torques. However, non-negative combinations of fewer muscle primitives 

require higher levels of co-contraction, i.e. muscular effort, to generate  the same force. Thus, to 

investigate such trade-off between dimensionality and effort in the context of arm control, the 

dimensionality of the muscle patterns for reaching has been compared with the dimensionality of 

the joint torques estimated from inverse dynamics calculations. Dimensionality of both torques and 

muscle patterns have been characterized in the spatial, temporal, and spatiotemporal domains 

(Russo et al., in preparation) 

 

A direct way to characterize the biomechanical function of a motor primitive is to estimate the 

forces and torques generated by its recruitment. While such approach is generally challenging 

because of the complex postural, non-linear, and dynamic dependence of the force generated by 

muscle contraction, a reliable characterization is feasible in the context of isometric force 

generation. Thus, the forces associated to muscle synergies have been investigated in the context of 

multidirectional isometric force generation at the hand.A linear mapping of muscle activity 

recorded from many muscles into hand forces has been estimated by multiple linear regressions. 

Such mapping has then been used to estimate the forces associated to the muscle synergies 

identified from muscle patterns by nonnegative matrix factorization during an isometric reaching 

task. Moreover, the observed modulation of muscle activities as a function of force direction has 

been compared with the directional tuning predicted by synergistic and non-synergistic model of 

muscle recruitment (Borzelli et al. in preparation). 
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In the context of locomotion, biomechanical constraints to motor primitives have been investigated 

experimentally in adults by changing locomotor conditions and thus modifying biomechanical 

requirements. First, the effect of different sensory feedback on motor primitives has been 

characterized during walking forward, backward, on an inclined surface, sideways, and stepping in 

place (Zelik et al. submitted). Moreover, bilateral coordination between unilateral primitives for 

walking on a split-belt treadmill at different speed combinations for the right and left legs has been 

studied (MacLellan et al. in preparation). Finally, coordination between arm and leg (cervical and 

lumbar) CPGs has been characterized during crawling at different speeds (MacLellan et al. 2013). 

 

This section of the Deliverable is organized into five subsections, each corresponding to the articles 

mentioned above. The first three (Russo et al. , ñDimensionality of joint torques and muscle patterns 

for reaching movementsò; Borzelli et al.,òEffort minimization and synergistic muscle recruitment 

for three-dimensional force generationò; MacLellan et al., ñTemporal structures of locomotor 

primitives adapt to environmental feedbackò) are in preparation and will be submitted shortly. The 

fourth article (Zelik et al., ñCan modular strategies reduce dimensionality of neural control during 

multidirectional locomotion?ò) has been submitted. The last article (MacLellan et al. 2013, 

ñDecoupling of upper and lower limb pattern generators during human crawling at different arm:leg 

speed combinationsò) has been published. 
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1.1.2 Dimensionality of joint torques and muscle patterns for reaching 

movements1 

Abstract 
 

Muscle activities underlying many motor behaviors can be generated by a small number of basic 

activation patterns with specific features shared across movement conditions. Such low-

dimensionality suggests that the central nervous system (CNS) relies on a modular organization to 

simplify control. However, the relationship between the dimensionality of muscle patterns and that 

of joint torques is unknown, because of redundancy and non-linearities in mapping the former into 

the latter. We compared the torques acting at four arm joints during fast reaching movements in 

different directions in the frontal and sagittal planes and the underlying muscle patterns. The 

dimensionality of the non-gravitational components of torques and muscle patterns in the spatial, 

temporal, and spatiotemporal domains was estimated by multidimensional decomposition 

techniques. The spatial organization of torques was captured by two or three generators, indicating 

that not all the available coordination patterns are employed by the CNS. A single temporal 

generator with a biphasic profile was identified, generalizing previous observations on a single 

plane. The number of spatiotemporal generators was equal to the product of the spatial and temporal 

dimensionalities and their organization was essentially synchronous. Muscle pattern 

dimensionalities were higher than torques dimensionalities but also higher than the minimum 

imposed by the inherent non-negativity of muscle activations. The spatiotemporal dimensionality of 

the muscle patterns was lower than the product of their spatial and temporal dimensionality, 

indicating the existence of specific asynchronous coordination patterns. Thus, the larger 

dimensionalities of the muscle patterns may allow the CNS to overcome the redundancy and non-

linearity of the musculoskeletal system and to flexibly generate endpoint trajectories with simple 

kinematic features using a limited number of building blocks. 

Introduction  
How the central nervous system (CNS) coordinates alarge number of muscles to generate complex 

motor behaviorsis an open question. The dynamic complexity of the skeletal system with its many 

degrees of freedom (DoF), the versatility of the motor system, capable of accomplishing many 

different tasks, and the redundancy and non-linearity of the muscular apparatus all pose challenging 

control problems. A modular architecture has been proposed as a way in which the CNS might 

tackle the complexity of motor control. In a modular architecture control is subdivided among basic 

building blocks, allowing for an efficient yet flexible task decomposition. In particular, a modular 

generation of the muscle patterns might allow for a low-dimensional representation of the motor 

output incorporating knowledge on the dynamic behavior of the musculoskeletal system into a 

small set of basis functions shared across tasks and conditions. Recently, the modular control 

hypothesis has been supported by the observation of low-dimensionality in the muscle patterns 

underlying a variety of motor behaviors in different species. Using multidimensional decomposition 

techniques such as principal component analysis (PCA), factor analysis (FA), and non-negative 

matrix factorization (NMF) it has been possible to reconstruct the muscle activation patterns as the 

combination of a small number of components (Tresch et al., 2006;Giszter et al., 2007;Ting and 

McKay, 2007;Bizzi et al., 2008;Tresch and Jarc, 2009;Lacquaniti et al., 2012;d'Avella and 
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Lacquaniti, 2013). These components may capture different features of the muscle patterns shared 

across task conditions, such as specific relationships in the strength of activation of groups of 

muscles, i.e. muscle synergies (Tresch et al., 1999;Ting and Macpherson, 2005) or M-modes 

(Krishnamoorthy et al., 2003), specific time-courses of the activation waveforms for all muscles, 

i.e. temporal components (Ivanenko et al., 2004;Dominici et al., 2011), and specific collections of 

muscle activation waveforms, i.e. time-varying muscle synergies (d'Avella et al., 2003;d'Avella et 

al., 2006) but they all construct muscle patterns by linear combinations of a small number of 

generators. However, even if muscle patterns can be accurately described by such generators, task 

accomplishment depends on the actual joint torques and the consequent joint motions produced by 

muscle contractions. Thus, to better understand how motor tasks may be accomplished by the 

combination of a few muscle pattern generators it is necessary to assess the relationship between the 

organization of muscle patterns and that of joint torques. 

 

While joint torques underlying many different motor behaviors have been investigated extensively, 

a characterization of their dimensionality with multidimensional decomposition approaches such as 

those recently used to analyze muscle patterns is missing. Focusing on reaching movements in 

vertical planes, as in many previous studies (Soechting and Lacquaniti, 1981; Lacquaniti et al., 

1982;Flanders et al., 1994; Flanders et al., 1996; d'Avella et al., 2006; d'Avella et al., 2008; d'Avella 

et al., 2011), our aim was to investigate the dimensionality of joint torques and to compare it with 

the dimensionality of the muscle patterns. Moreover, we wanted to explore systematically the 

dimensionality of different types of generators, i.e. generators capturing shared structure in the 

spatial ïacross joints or musclesï, temporal, and spatiotemporal dimensions. Planar point-to-point 

reaching movements, for which joint torques can be estimated using a simplified dynamical model 

of the arm with two joints, are normally associated to bell-shaped velocity profiles and biphasic 

torque profiles(Morasso, 1981;Soechting and Lacquaniti, 1981). The shape of such profiles is 

invariant with respect to movement speed (Soechting and Lacquaniti, 1981) or load (Lacquaniti et 

al., 1982) and the relationship between shoulder and elbow dynamic torques is almost linear 

(Soechting and Lacquaniti, 1981;Gottlieb, 1997). These observations indicate that joint torques for 

reaching have remarkable regularities suggesting that their dimensionality is also low. One might 

hypothesize that there is a one-to-one relationship between muscle pattern generators and torque 

generators. However, biomechanical characteristics and constraints must be taken into account. 

First, the muscular system is redundant, i.e. the same torque may be obtained by infinitely many 

different muscle patterns and, consequently, the dimensionality of torques generators may be lower 

than the dimensionality of muscle pattern generators. Moreover, as muscles can only pull, muscle 

pattern generators are combined with non-negative combination coefficients and, even considering 

a linear  muscle-to-torque mapping, to generate torques spanning a D-dimensional space at least D 

+ 1 non-negative generators are required (Davis, 1954;Valero-Cuevas, 2009). Thus, the minimum 

number of muscle pattern generators depends on the actual dimensionality of the joint torque 

required to perform all conditions of a specific task. Importantly, we consider here tasks whose 

conditions can be described by a set of parameters, such as, for example, the position of a target of a 

point-to-point reaching movement. Then, since the skeletal system is also redundant for the 

performance of many tasks, e.g. a specific position of the wrist in space can be achieved with many 

different joint angle configurations, the actual dimensionality of the joint torques may be lower than 

the number of joints (i.e. DoF) involved and it must be determined experimentally. Finally, while 

the minimal number of muscle pattern generators might guarantee an optimal solution in terms of 

computational complexity, it might be suboptimal in terms of other costs such as muscular effort. In 

fact, the minimum effort muscle pattern for achieving a task typically requires independent 

recruitment of all muscles, i.e. the maximum dimensionality.   

 

We analyzed EMGs data recorded from 16 muscles and kinematic data collected from markers 

positioned on the arm of subjects performing fast reaching movements from one starting position to 
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8 targets on the sagittal plane and 8 targets on the frontal plane. We used a dynamic model of the 

arm with 4 rotational joints (three at the shoulder and one at the elbow) and 3 translational DoF (the 

position in space of the shoulder) to estimate joint torques from joint angles with an inverse 

dynamics computation (Corke, 1996). We then considered the dynamic component of the torques, 

i.e. the total torques with the gravitational components removed (Gottlieb, 1997), and the phasic 

component of the muscle activity waveforms, i.e. the total rectified and filtered EMG waveforms 

with the tonic, anti-gravity components removed (Flanders and Herrmann, 1992;d'Avella et al., 

2006). Spatial, temporal, and spatiotemporal torque generators were identified by performing PCA 

on different arrangements of the data matrix. Similarly, spatial, temporal, and spatiotemporal 

muscle pattern generators were identified with NMF. We first determined the dimensionality of 

generators according either to a threshold on the fraction of data variation explained (Tresch et al., 

1999;Ting and Macpherson, 2005;Torres-Oviedo et al., 2006;Roh et al., 2012) or to the detection of 

a ñkneeò in the curve of the variation explained as a function of the number of generators (d'Avella 

et al., 2003;Cheung et al., 2005;d'Avella et al., 2006;Tresch et al., 2006). We used the former 

criterion for the torque data and the latter for the EMG data. However, to directly compare the 

dimensionality of torques and muscle patterns, we then also used a single criterion which took into 

account the different intrinsic variability of the two datasets when determining their dimensionality 

(Cheung et al., 2009).  

Materials and Methods 

Participants, experimental apparatu s and task 
Four right handed subjects (aged between 27 and 40) gave their written informed consent to 

participate in the study, which conformed with the Declaration of Helsinki and had been approved 

by the Ethical Review Board of the Santa Lucia Foundation. The experimental apparatus and 

reaching task has been described in details in a previous report (d'Avella et al., 2006). Briefly, 

standing subjects gripped with their right hand an handle (weight 180 g) which had a sphere 

(diameter 4 cm) attached to one extremity. The center of sphere was aligned with the axis of the 

forearm at a distance of 12 cm from center of the palm.  Participants were instructed to move the 

sphere between a central position and 8 targets uniformly arranged on a circle at 15 cm of distance 

on either the frontal or sagittal plane while minimizing shoulder and wrist movements. The central 

position was adjusted for each subject so that it required maintaining the upper arm vertical and 

aligned to the trunk and the elbow flexed at 90°. The targets were indicated by transparent spheres 

lighted from inside by an LED. In each trial, after holding the sphere at the start position for at least 

1 s, subjects were instructed to move after a go signal, to reach the target with a movement of a 

duration (defined as the interval in which the speed of the sphere was above 10% of its maximum) 

shorter than 400 ms, and to hold there for at least 1 s. Unsuccessful trials were repeated. Each 

subject performed each movement successfully 5 times in different blocks of trials for a total of 160 

point-to-point movements (2 planes × 8 targets × 2 directions -from the center to the target and from 

the target back to the center- × 5 repetitions). 

Data acquisition  
The motion of the arm was recorded using an optic motion-tracking system (Optotrack 3020, 

Nothern Digital, Waterloo, Ontario, Canada) with a sampling frequency of 120 Hz and spatial 

resolution below  0.1mm. Active optical markers were positioned on the shoulder (acromion), the 

upper arm (at the proximal end close to the head of the humerus), the elbow (epicondyluslateralis), 

the wrist (one over the styloid process the radius and one on the styloid process of the ulna). The 

motion of the sphere on the handle (end-point) was recorded with an electromagnetic motion-

tracking system (Fastrak, Polhemus, Calchester, VT) with sampling frequency of 120 Hz and spatial 
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resolution below 4 mm, as estimated by a calibration process performed within the workspace used 

in the experiment. 

EMG activity was recorded with active bipolar surface electrodes (DE 2.1; Delsys, Boston,MA) 

from the following muscles: biceps brachii, short head (BicShort), biceps brachii, long  head 

(BicLong), brachialis (Brac), pronator teres (PronTer), brachioradialis (BrRad), triceps brachii, 

lateral head (TrLat), triceps brachii, long head (TrLong), triceps brachii, medial head (TrMed) 

deltoid, anterior (DeltA), deltoid, middle (DeltM), deltoid, posterior (DeltP), pectoralis major, 

clavicular portion (PectClav), pectoralis major, lower portion (PectLow), trapezius superior 

(TrapSup), trapezius middle (TrapMid), trapezius inferior (TrapInf), latissimusdorsi (LatDors), teres 

major (TeresMaj), infraspinatus (InfraSp). EMG signal was band-pass filtered (20-450 Hz) and 

amplified (total gain 1000, Bagnoli-16, Delsys Inc.). EMG data were digitized at 1 KHz (PCI-

6035E, National Instruments, Austin, TX). 

Data acquisition and experiment control were performed on a workstation with custom software 

written in LabView (National Instruments, Austin, TX). Fastrak data were processed on-line to 

compute the movement time and target accuracy and to provide auditory feedback about 

unsuccessful trials. The experiment control program logged the time of all relevant behavioral 

events.  

 

Data analysis  
 

point kinematics  
All analyses were performed with custom software written in Matlab (Mathworks, Natick, MA). 

Position and orientation of the handle and the measured geometric parameters of the handle were 

used to compute the position of the end-point. The data were low-pass filtered (FIR filter; 15 Hz 

cutoff; zero-phase distortion; Matlab fir1 and filtfilt functions) and differentiated to compute 

tangential velocity and speed. For each movement we computed the onset time and the end time, 

defined respectively as the time in which the speed profile crossed 10% of its maximum value, and 

the movement duration (MT), defined as the interval between the movement onset and the 

movement end.  

 

Arm model  
A kinematic and kinetic model of the arm, incorporating geometrical and inertial parameters of the 

upper arm and forearm segments, was used to estimate joint angles and joint torques from the 

recorded spatial position of the shoulder, the elbow, and the wrist markers. The kinematic model 

was developed using the Denavit-Hartenberg (D-H) notation (Hartenberg and Denavit, 1955), i.e. as 

chain of articulated links with four parameters for each link (a: length, Ŭ: twist, d: offset, ᵻ : joint 

angle) describing the position and orientation of a Cartesian reference frame fixed on each link with 

respect to the reference frame fixed on the preceding link of the chain according to the 4 × 4 

homogeneous transformation matrix T: 

 

cos sin cos sin sin cos

sin cos cos cos sin sin

0 sin cos

0 0 0 1

a

a
T

d

J J a J a J

J q a q a q

a a

-è ø
é ù

-
é ù=
é ù
é ù
ê ú . (1) 

The rotation axis of each joint coincides with the z axis of the preceding link in the chain. The x axis 

in each frame is directed as the normal between the z axis of that frame and the z axis of the next 

frame. In this way the joint angle is the angle between the x axes of the frames of the two links 
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connected by the joint. We modeledfour rotational degrees-of-freedom (DOFs) of the arm three 

rotations at the shoulder, i.e. adduction, flexion and external rotation,  and one rotation at the elbow, 

i.e. elbow flexion (see Figure 1) and three translational DOFs of the shoulder. We assumed that 

shoulder was a spherical joint (i.e. the rotation axes of the three joints intersect at a single point). 

Lengths of upper arm, forearm, and hand of each subject were estimated as a function of the 

subjectôs weight and height according to regression equations (Winter, 1990). Forearm, hand, and 

handle were considered a single link (7
th
) of length equal to the sum of the forearm length and the 

length of the opened hand, thus approximating the total length of the closed hand and the handle 

along the direction of the forearm axis with the length of the opened hand.  

 

 
Figure 1. Joint angle definition for the arm model. The four joint angles included in the model 

(shoulder adduction, shoulder flexion, shoulder external rotation, and elbow flexion) are illustrated 

by a sequence of postures in space of a two-link arm. 

 

The kinetic model of the arm was developed adding to each link its inertial parameters (mass, center 

of mass, inertia tensor)  also estimated as a function of the subjectôs weight and height according to 

regression equations(Zatsiorsky and Seluyanov, 1983). No mass was associated to the first three 

links required to represent the spatial position of the shoulder. However these translational DOFs 

were introduced to take into account shoulder movements when estimating the joint torques. The 

mass of the upper arm was assigned to the 6
th
 link, which had an offset equal to the length of the 

upper arm segment.  The mass of the forearm, hand, and handle was assigned to the 7
th
 link, 

associated with the elbow flexion. The inertial parameters for this link were computed from the 

inertial parameters estimated separately from the regression equations for the forearm and hand. As 

the estimated position of the center of mass of the hand and of the handle coincided, the mass of the 

handle (180 g) was summed to the mass of the hand. The moments of inertia were computed with 

respect to its center of mass. The model was implemented in Matlab using the Robotic Toolbox 

(Corke, 1996;Corke, 2011). The D-H parameters of the generic arm model are reported in Table 1 

and the specific geometric and inertial parameters estimated for each subject are reported in Table 

2. 

 

Table 1. D-H parameters for the 7 DOFs arm model.Sh: shoulder, El: elbow, LF: forearm link 

length, LU: upper arm link length; P is for prismatic joints and R is for revolute joints. 

Link  DOF Ŭi ai ɗi di Type Offset 

1 Sh X ˊ/2 0 ˊ/2 0 P 0 

2 Sh Y ˊ/2 0 ˊ/2 0 P 0 

3 Sh Z ˊ/2 0 ˊ/2 0 P 0 

4 Sh adduction ˊ/2 0 0 0 R - ˊ/2 
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5 Sh flexion ˊ/2 0 0 0 R ˊ/2 

6 Sh external 

rotation 

ˊ/2 0 0 LU R  ́

7 El flexion 0 LF 0 0 R ˊ/2 

 

 

Table 2. Arm model parameters for individual subjects.U: upper arm length, F: forearm length 

(including hand and handle), rU: position of the upper arm center-of-mass along the link-6 x axis, 

rF: position of the upper arm center-of-mass along the link-7 x axis, I(lo) U, inertia along the 

longitudinal axis of the upper arm, I(ap) U, inertia along the antero-posterior axis of the upper arm, 

I(tr) U, inertia along the trasversal axis of the upper arm, I(lo) F, inertia along the longitudinal axis 

of the forearm+hand+handle system, I(ap) F, inertia along the antero-posterior axis of the 

forearm+hand+handle system, I(tr) F, inertia along the trasversal axis of the forearm+hand+handle 

system 

Subject 1 2 3 4 

Height (cm) 

 

180 162 177 181 

Weight (Kg) 84 58 75 78 

LU (cm) 33.48 30.13 32.92 33.67 

LF (cm) 45.36 40.82 44.60 45.61 

rU (cm) 13.91 12.16 13.48 13.78 

rF (cm) 26.38 23.57 25.83 26.39 

MU (kg) 2.29 1.56 2.03 2.11 

MF (kg) 2.00 1.52 1.84 1.90 

I(lo) U (kg cm
2
 s

-2
) 46.54 28.54 40.45 42.61 

I(ap) U (kg cm
2
 s

-2
) 137.84 74.02 120.09 130.03 

I(tr) U (kg cm
2
 s

-2
) 152.50 84.74 133.92 144.65 

I(lo) F (kg cm
2
 s

-2
) 21.91 12.93 18.63 19.56 

I(ap) F (kg cm
2
 s

-2
) 465.00 295.87 416.54 445.74 

I(tr) F (kg cm
2
 s

-2
) 475.79 302.27 425.77 455.45 

 

Joints kinematics  
The arm model was used to estimate at each time sample the shoulder adduction angle, the shoulder 

flexion angle, the shoulder external rotation angle, the elbow flexion angle using the positions of the 

shoulder and elbow markers and the mean position between the two wrist markers. For time sample 

and each joint angle,  a vector between two markers aligned with the axis of the limb segment 

defining the rotation of that joint (i.e. shoulder and elbow markers for shoulder adduction and 

shoulder flexion, elbow and wrist markers for shoulder external rotation and elbow flexion) was 

computed first. Then, the segment vector was transformed into the reference frame associated to the 

joint and the angle computed as 

 
1tan ( / )i y xJ -=

 (2) 

where x and y are the coordinate of the vector in the reference frame associated with the joint 

rotation axis (z axis). To compensate for potential misalignment between the tracker z axis and the 

vertical axis, the coordinates of the markers were first rotated into a Cartesian reference frame with 

the gravitational acceleration along the z axis. The direction of the gravitational acceleration was 

estimated by means of a calibration of based on tracking two markers attached to the fulcrum and 

the extremity of a pendulum.  
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Angular velocity and acceleration were computed by numerical differentiation. To validate the 

kinematic model, forward kinematics was used to compare estimated and measured end-point 

trajectories.  

 

Inverse dynamics  
Joint angles, joint velocities and joint accelerations were used to estimate the torque profiles via 

recursive Newton-Euler calculation (rne function of Matlab Robotics Toolbox). We computed the 

total torques Ű 

 ( ) ( , ) ( )= + +Ű Mq q Cq q q G q## # #
 (3) 

where M  is the manipulator inertia matrix, C is the Coriolis and centripetal torque, and G is the 

gravitational torques. To estimate non-gravitational (dynamic) torques we subtracted gravitational 

torques from the total torques. 

 

Data preprocessing  
The EMGs for each trial were digitally full-wave rectified, low-pass filtered (FIR filter, 20 Hz cut-

off, zero-phase distortion, Matlabfir1 and filtfilt  functions), and integrated over 10 ms intervals.  In 

a few cases muscle waveforms showed some artifacts, possibly due to a partial detachment of the 

electrode from the skin, and those muscles were removed from further analysis (subject 1: PectLow; 

subject 2: TrapInf, PectLow). 

EMGs and torques for all the trials in each experimental condition (2 planes × 8 targets × 2 

directions) were aligned on the time of movement onset and averaged. 

Finally, both torques and muscle waveforms were normalized in time to equal movement duration 

and resampled with 50 samples per movement duration (MT). Samples from 0.5 MT before 

movement onset to 0.5 MT after movement end (total 100 samples) were considered for further 

analysis. 

 

Dimensionality of motor commands  
We consider a set of D command signals (joint torques or muscle patterns) delivered by a controller 

in a given time interval (sampled T times) to accomplish a task in one of K distinct task conditions 

(e.g. different reaching targets). We hypothesize that a modular controller generates these command 

signals by modulating and combining a small set of generators whose structure is invariant across 

all task conditions. The structure of such generators may be defined in the spatial (across signals, 

i.e. muscles or joints), temporal, and spatiotemporal domains. The dimensionality of the ensemble 

of command signals is then simply the number of generators necessary to accomplish all K tasks 

conditions.  

 

Spatial dimensionality is the number of generators necessary to capture time-invariant 

relationships between the signals. For N generators: 

 

1

( ) ( )
N

k k

n n

n

t c t
=

=äx w

 

(4) 

where ( )k tx  are the set of signals for condition k, i.e. a vector-valued (D-dimensional) function 

time (or a D × T matrix for discrete time samples), ( )k

nc t  is a condition-dependent, time-varying 

combination coefficient for the n-th generator, nw  is the condition-independent, time-invariant n-

thspatial generator, i.e. a D-dimensional vector capturing the relative activation weight of different 

signals.  
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Temporal dimensionality is the number of generators necessary to capture temporal  components 

shared across all signals (i.e. space-invariant). For N generators: 

 

1

( ) ( )
N

k k

n n

n

t c t
=

=äx w

 

(5) 

where ( )k tx  are again the set of signals for condition k, ( )nc t  is the condition-independent, time-

varying n-th generator (or temporal component), 
k

nw  is the condition-dependent, time-invariant n-

thD-dimensional weight vector for the n-th component. Notice how the critical difference in the 

definition of spatial and temporal generators and dimensionality is in the dependence on the task 

condition (k). Indeed, generators are useful concepts only if they can be used for a variety of 

conditions thus allowing an effective reduction of the number of parameters to select for each 

condition.  

 

Spatiotemporal dimensionality is the number of generators capturing simultaneously invariant 

spatial and temporal features in the signals. Thus, each generator includes a set of signal 

components that can be expressed as a time-varying vector. For N generators  

 

1

( ) ( )
N

k k

n n

n

t a t
=

=äx v

 

(6) 

where ka  is a condition-dependent combination coefficient for the n-th generator, ( )n tv  is the n-th 

spatiotemporal generator, i.e. a condition-independent, time-varying D-dimensional vector  (or a D 

× T matrix for discrete time samples). However, as different signals may be related synchronously 

or asynchronously, we can distinguish the case of synchronous spatiotemporal generators:  

 ( ) ( )n n nt c t=v w
 

(7) 

in which each generator  ( )n tv  can be expressed as the product of a scalar function of time ( )nc t

times a time-invariant weight vector nw . In contrast, asynchronous spatiotemporal generators 

cannot in general be factorized into separate spatial and temporal generators. 

 

In addition to being scaled in amplitude, spatiotemporal generators may also be recruited at 

different times across task conditions, i.e. they may also show invariance for time shifts(d'Avella et 

al., 2003;d'Avella et al., 2006). If we assume that the duration of each spatiotemporal generator is 

smaller than the duration of the signals, we can incorporate condition-dependent onset times 
k

nt  into 

Eq. 6: 

 

1

( ) ( )
N

k k k

n n n

n

t a t t
=

= -äx v

 

(8). 

 

Identification of generators and their dimensionality  
To investigate the spatial, temporal, and spatiotemporal dimensionality of joint torques and muscle 

patterns we used multidimensional decomposition techniques to identify the different types of 

generators. We considered the dynamic component of the torques and the phasic component of the 

muscle activity waveforms. We then used PCA to identify torque generators and, because of the 

inherent non-negativity of muscle activity, we used NMF to identify muscle pattern generators. 

Finally, as discussed below, we selected the number of generators with three different criteria, two 

specific for each dataset and one for both datasets. 
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Dynamic torques and phasic muscle patterns. Reaching movements in vertical planesrequire 

torques and muscle activitiesto accelerate and decelerate the limb and to balance gravitational 

forces. In this work we focused on the former components, i.e. dynamic torques and phasic muscle 

patterns. Dynamic torques were computed as the total torques with the gravitational components 

(the last term of the right hand side of Equation 3) removed (Gottlieb, 1997). Flanders and 

collaborators (Flanders and Herrmann, 1992) found that it is possible to distinguish the phasic 

component (related to the movement) from the tonic one (related to maintain a specific posture of 

the arm) of an EMG signal. As in (d'Avella et al., 2006) we used a subtraction procedure to remove 

the tonic component, i.e. we subtracted a constant muscle activation level before and after the 

movement and a linear ramp between the two constant values during the movement. Since after the 

subtraction a small fraction of EMG samples assumed negative values, indicating that the phasic 

EMG activity was lower than the tonic activity. However, in order to use the NMF algorithm, we 

set to zero all negative values (ratio of negative area over total area of all muscles, 0.10 ± 0.03, 

mean ± SD over subjects). 

 

Data matrices.To identify spatial, temporal, and spatiotemporal generators, joint torque and muscle 

patters data, after pre-processing, were organized into three different data matrices that were 

factorized by either PCA (torques) or NMF (muscle patterns). For each subjects we identified 

generators from Ktask conditions (K = 32, except for subject 3 for which we had to exclude 2 

conditions on the frontal plane and 2 on the sagittal plane because of missing data from the arm 

markers used to compute joint angles). To identify spatial generators, the data for each condition (D 

signals, EMG or torque, times T samples, with T  = 100 after time normalization and resampling, 

see Figure 2) were arranged into a data matrix Xwith D row and T × K columns which was 

factorized, according to Equation 4 in matrix notation, as X = W C, whereW is the condition-

independent synergy matrix with D rows and N columns, N number of generators, and C is the 

matrix of condition- and time-dependent combination coefficients with N rows and T × K columns. 

For temporal generators, in contrast, the data matrix was constructed by arranging the waveforms 

from all signals in all conditions as columns, i.e. X had T rows and D× K columns, and it was 

factorized, according to Equation 5 in matrix notation, as X = C W, with C is the condition-

independent matrix of temporal components, with T rows and N columns, and W is the condition- 

and signal-dependent matrix of weights, with N rows and D× K columns. Finally, for 

spatiotemporal generators, the data samples for all signals of each conditions were arranged in a 

column and the data matrix X, with D× T rows and K columns, was factorized, according to 

Equation 6 in matrix form, as X = V A, with Vcondition-independent matrix of time-varying 

synergies with D× T rows and N columns and A condition-dependent matrix of combination 

coefficients with N rows and K columns. For joint torque generators, the covariance of the data 

matrix was computed and, for each N, the first N principal components (extracted using MATLAB 

pcacov function) were considered. For muscle pattern generators, for each N, C and W matrices 

were initialized randomly and the best solution out of 20 runs of the NMF algorithm was selected. 

Each run of the iterative algorithm was terminated when the reconstruction R
2
 increased in one 

iteration by less than 10
-4

 for 5 consecutive iterations. 

 
Selection of the number of generators. For torque generators, we selected their number as the 

minimum number which explained at least 90% of the data variation (VAF or R
2
, defined as 1 ï 

SSE/SST, with SSE sum of square residuals of the data reconstruction by the generators, and SST 

sum of the squared residuals of the data with respect to the mean over the rows of the data matrix). 

Such criterion (ñR
2
 thresholdò) has been frequently used in the muscle synergy literature (Tresch et 

al., 1999;Ting and Macpherson, 2005;Torres-Oviedo et al., 2006;Roh et al., 2012), even if 

sometimes with a different definition (i.e. with SST defined as the sum of the squared data, see 
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(Delis et al., 2013)). Such criterion is based on the assumption that the fraction of data variation 

unexplained is due to noise and the threshold is supposed to separate structured variation due to the 

combination of generators and noise. However, if an independent estimation of the noise level is not 

available the choice of such threshold is necessarily ad-hoc. An alternative approach, also used in 

previous studies (d'Avella et al., 2003;Cheung et al., 2005;Tresch et al., 2006), that we used for 

selecting the number of muscle pattern generators is the detection of a ñkneeò in the curve of R
2
as a 

function of the number of generators. Such criterion (ñR
2
 kneeò) relies on the assumption that the 

noise is isotropic, i.e. contributes equally to all dimensions, and does not depend on a specific 

assumption of the relative level of noise. To detect a change in slope in the R
2
 curve, for each N, we 

performed a linear fit of the portion of the curve from N to the end (i.e. D) and we selected N for 

which the mean square error of the fit was <10
-4
, indicating that the ñtailò of the curve after the 

ñkneeò was essentially straight. We could not use this second criterion for the torques as the their 

maximum spatial dimension (4) was too low and it was impossible to identify a ñkneeò with such 

procedure. However, to compare torque and muscle pattern with the same criterion, we also 

determined their dimensionality with a criterion (ñR
2
 shuffleò) that took into account the different 

intrinsic noise levels of the two datasets. We then use a threshold on the slope of the R
2
curve 

according to slope of the curve obtained after a random shuffling the rows of the data matrix 

(Cheung et al., 2009). By shuffling the data the multidimensional structure of the original data was 

lost but each dimension maintained the original variability. Thus, we selected the number of 

generators as the point on the original R
2 

curve at which any further increase in the number of 

extracted generators yielded an R
2
 increase smaller than 75% of that for the generators extracted 

from the shuffled data (mean over 50 extractions from reshuffled data). 
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Figure 2. Types of multidimensional decomposition of data from different task conditions. 

Data collected from D channels (4 in this schematic illustration, represented by different patterns) 

over T time samples (6, represented by different color saturations) in a single task condition are 

represented by a grid of squares. Different task conditions are represented with different 

background colors. A spatial decomposition is obtained by factorizing the data matrix obtained by 

stacking the data from individual conditions horizontally (i.e. matching their spatial ïchannelsï 

dimension) into a matrix of N(3) spatial generators (D rows and N columns) times a matrix of time-

and condition-dependent coefficients. A temporal decomposition is obtained by factorizing the 

transpose of data matrix obtained by stacking the data from individual conditions vertically (i.e. 

matching their temporal dimension) into a matrix of N (3) temporal generators (T rows and N 

columns) times a matrix of channel- and condition-dependent coefficients. Finally, a spatiotemporal 

decomposition is obtained by arranging all the data samples of each condition into a column and 

factorizing the resulting matrix into a matrix of N (3) spatiotemporal generators (D × T rows and N 

columns) times a matrix of condition-dependent coefficients. 

 

Results 
 

Dynamic torques  
Joint torques were estimated by inverse dynamics from joint angle trajectories using a kinetic model 

of the arm parametrized by the height and weight of each subject. Figure 3 shows an example of 

end point trajectories, end point speed profiles, joint angle trajectories, angular velocities, and 

gravitational and dynamic joint torque profiles for 8 center-out movements on the frontal plane. As 

expected, end point trajectories were straight and velocity profiles bell-shaped. Joint angle 

trajectories and the corresponding angular velocities were modulated by movement direction. 

Dynamic torques, i.e. total torque with the gravitational torques removed, were bi-phasic, as 

observed before (Gottlieb, 1997). The time courses of the joint angle trajectories and angular 

velocities were different across joints and conditions but, because of the dynamic interaction 

between the different degrees-of-freedom, did not need to be generated by asynchronous torque 

profiles and, in fact, they were generated by a synchronous biphasic pulse of torque distributed 

across joints with different balances depending on the movement direction. Such coordination 

patterns in the dynamic torque profiles is clearly visible in a scatter plot of a pair of joint torques. 

Figure 4 shows the six scatter plots of all pairs of joint torque profiles, during an interval of 250 ms 

around movement onset, approximately capturing the first phase of the profile, for the same 8 

movements of Figure 3. If a pairs of torques were modulated synchronously, the corresponding 

trajectory in the scatter plot would appear as a straight line segment with a direction depending on 

the relative amplitude. Indeed, for most pairs and movement directions  dynamic torques appeared 

to be modulated close to synchronously, especially in the initial (raising) portion of the profile. 

Finally, for two pairs of dynamic torques, shoulder external rotation-shoulder adduction and elbow 

flexion-shoulder flexion, the direction of the line segment in the scatter plot depended only weakly 

on the movement direction, suggesting that the dynamic torques were spanning a subspace of the 

four dimensional torque space orthogonal to those two directions. We then generalized these 

observations by identifying dynamic torque generators and estimating their dimensionality. 
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Figure 3. Example of endpoint speed, velocity, jointangles and torques. Example of endpoint 

trajectories, end-point speed profiles, joint angles, joint angular velocities, gravitational (light gray) 

and dynamic (dark gray) torques for eight center-out movements in the frontal plane of subject 1. 

Vertical dashed lines represent the times of movement onset and movement end. 
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Figure 4.Example of coordination between pairs of dynamic torques. Each scatter plot 

illustrated the dynamic torques for a pair of joints recorded in an interval of 250 ms around the time 

of movement onset for 8 center-out movements in the frontal plane of subject 1. 

 

Spatial dimensionality  
We first assessed the spatial dimensionality of the dynamic torques by identifying spatial 

generators, i.e. vectors in the torque space capturing specific balances of torque magnitude which 

could reconstruct the data once multiplied by time- and condition-dependent coefficients (see 

Materials and Methods and Figure 2), using PCA. For each subject, the number of generators was 

selected as the minimum number for which the fraction of data variation explained exceeded 0.9 

(ñR
2
thresholdò criterion) and as the number of generators for with adding an additional generator 

increased the R
2
 value less than 75% of the mean R

2
 values obtained identifying generators from 

shuffled data (ñR
2
 shuffleò criterion). The mean dimensionality across subjects was 2.25 according 

to the R
2
threshold criterion and 2.75 according to the R

2
 shuffle criterion (see Table 3 for individual 

values). The maximum potential spatial dimensionality of the torques was 4, corresponding to the 

number of joints, i.e. the number rows of the data matrix used for spatial decomposition (Figure 2).  

 

Figure 5A showsthe R
2
 value as a function of the number of generators for subject 1 and Figure 5B 

the three spatial generators of the same subject selected according to the R
2
shuffle criterion. The 

first generator (w1) is dominated by shoulder flexion torque. The second generator (w2) combines a 

large shoulder adduction torque with a smaller shoulder internal rotation (i.e. negative external 

rotation) and elbow extension (i.e. negative elbow flexion). Finally, the third generator (w3) 

represents a large elbow flexion torque and a smaller shoulder adduction torque. Notably, none of 

the generators or their combinations can generate coordinated shoulder adduction and shoulder 

external rotation torques, i.e. the direction orthogonal to the torques direction observed in the 

corresponding scatter plot of Figure 4. Thus, the structure of the spatial generators indicated that 
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such torque coordination pattern was never used to perform reaching movements in the frontal and 

sagittal planes.  

 

 
Figure 5.Spatial decomposition of dynamic torques.A: R

2
 curve for subject 1 obtained by spatial 

decomposition using PCA. B: Three spatial generators selected for subject 1. C: Example of the 

reconstructions of the dynamic torques for six movement conditions of subject 1 obtained with the 

generators illustrated in panel B (shaded area: original data, thick line: reconstructed data, bottom: 

time-varying combination coefficients). 

 

 



21 

 

Figure 5C illustratesan example of the reconstruction of the dynamic torque profiles of subject 1 in 

six different conditions by the combination of the three spatial generators of Figure 5B. The 

dynamic torques for the first two conditions, medial and lateral movements in the frontal plane, are 

generated by a comparable level of activation of all three generators with a bi-phasic activation of 

shoulder adduction and internal rotation followed by shoulder abduction and external rotation for 

the medial movement and the opposite order for the lateral movement captured mainly by the 

activation of the second generation with similar bi-phasic profiles but opposite signs of its 

combination coefficient (c2).  The last two conditions, backward and forward movements in the 

sagittal plane, require large shoulder flexion/extension torques that are generated by a bi-phasic 

activation of the first generator, captured by the first time-varying coefficient (c1).  

 

To assess the similarity between the subspaces spanned by the generators identified in each subject 

we reconstructed all dynamic torques of each subject with the generators of all subjects. Table 4 

shows the R
2
 values obtained using the number of generators determined according to the R

2
 shuffle 

criterion (see Table 3). The mean R
2
 value for the reconstruction of the data of each subject by the 

generators extracted from the other subjects (0.96 ± 0.04, mean ± SD, n = 12) was close to the mean 

R
2
 value of the reconstruction of the data of each subject by the generators extracted from the same 

data (0.98 ± 0.02, n = 4), indicating that the dynamic torques of the different subjects shared a 

similar spatial organization. 

 

Table 3: Comparison of different types of dimensionality of dynamic torques and phasic muscle 

patterns estimated according to three criteria for the selection of the number of generators. 

  Torques Muscle patterns 

Subject Criterion Spatial Temporal Spatiotemporal Spatial Temporal Spatiotemporal 

S 1 

R
2
 threshold 2 1 3 - - - 

R
2
  knee - - - 4 5 5 

R
2
 shuffle 3 1 3 4 4 7 

S 2 

R
2
 threshold 3 1 3 - - - 

R
2
  knee - - - 5 5 6 

R
2
 shuffle 3 1 3 5 4 7 

S 3 

R
2
 threshold 2 1 3 - - - 

R
2
  knee - - - 6 4 6 

R
2
 shuffle 3 1 3 6 3 7 

S 4 

R
2
 threshold 2 1 2 - - - 

R
2
  knee - - - 5 4 5 

R
2
 shuffle 2 1 2 5 4 8 

 

 

Table 4: R
2
 for the reconstruction of the data of each subject with the generators identified in all 

subjects.  
 Generators/Data S 1 S 2 S 3 S 4 

Spatial S 1 0.99 0.99 0.98 0.99 

 S 2 0.99 0.99 0.97 0.99 

 S 3 0.99 0.98 0.99 0.99 

 S 4 0.92 0.90 0.88 0.95 

Temporal S 1 0.95 0.92 0.92 0.93 

 S 2 0.94 0.93 0.94 0.93 

 S 3 0.91 0.92 0.94 0.92 

 S 4 0.94 0.92 0.93 0.93 
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Spatiotemporal S 1 0.97 0.92 0.90 0.94 

 S 2 0.94 0.95 0.92 0.93 

 S 3 0.90 0.89 0.96 0.92 

 S 4 0.88 0.84 0.82 0.91 

 

Table 5: R
2
 for the reconstruction of the data of each subject with the muscle pattern 

generators identified in all subjects.  
 Generators/Data S 1 S 2 S 3 S 4 

Spatial S 1 0.80 0.60 0.54 0.62 

 S 2 0.64 0.74 0.61 0.70 

 S 3 0.67 0.71 0.80 0.69 

 S 4 0.73 0.75 0.60 0.85 

Temporal S 1 0.88 0.83 0.88 0.83 

 S 2 0.85 0.86 0.88 0.85 

 S 3 0.81 0.79 0.86 0.79 

 S 4 0.77 0.78 0.83 0.81 

Spatiotemporal S 1 0.84 0.30 0.27 0.32 

 S 2 0.37 0.77 0.41 0.51 

 S 3 0.25 0.41 0.79 0.36 

 S 4 0.38 0.49 0.39 0.80 

 

 

Temporal dimensionality  
To identify generators of the temporal organization of dynamic torques we performed PCA on the 

collection of the torque profiles of all joints and conditions. The resulting temporal components 

were then waveforms with the same duration as the torque profiles and each profile was 

reconstructed by multiplying the component matrix by a weight specific for that joint and condition. 

The dimensionality was 1 for all subjects and for both criteria (see Table 3). In contrast, the 

maximum potential temporal dimensionality of the torques was 100, corresponding to the number 

of time samples after time-normalization and resampling from -0.5 MT before movement onset and 

0.5 MT after movement end, i.e. the number of rows of the data matrix used for temporal 

decomposition (Figure 2).  

 

Figure 6Aillustrates the R
2
 curve for the temporal decomposition up to 12 generators for subject 1 

and Figure 6B the single temporal component identified in this subject and representative of all 

subjects, clearly showing a bi-phasic profile. Figure 6C illustrates the reconstruction of the joint 

torques for the same six conditions of Figure 5C by the temporal generator. The torque profiles for 

each condition are reconstructed multiplying the single temporal component (c1) by a single 

condition-dependent weight vector (w1). With respect to the reconstruction with spatial generators, 

the weight vector, which has the same dimensions of a spatial generator, is now modulated by the 

movement. For example the opposite signs in the bi-phasic profiles of shoulder adduction and 

external rotation for medial and lateral movements and for shoulder flexion for backward and 

forward movements are obtained by opposite signs of the components of the weight vector. 
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Figure 6.Temporal decomposition of dynamic torques. A: R

2
 curve for subject 1 obtained by 

temporal decomposition using PCA. B: The single temporal generators selected for subject 1. C: 

Example of the reconstructions of the dynamic torques for six movement conditions of subject 1 

obtained with the generator illustrated in panel B (shaded area: original data, thick line: 

reconstructed data, bottom: joint-specific weights). 
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Finally, the temporal generators were also similar across all subjects. As for spatial generators, the 

reconstruction of the data of each subject by the generators of all other subjects had a mean R
2
 (0.93 

± 0.01) which was comparable with the mean R
2
 for the reconstruction of the data of each subject 

by the generator extracted from the same data (0.94 ± 0.01).  

 

Spatiotemporal dimensionality  
Spatiotemporal generators, which can be viewed as either time-varying vectors capturing a different 

spatial coordination among torques at each time or as collections of different waveforms for each 

torque, were identified by PCA on a data matrix obtained arranging all time samples from all joints 

in a single row for each movement condition. Thus, torque samples from different joints and times 

represented different dimensions and the possibility of generating the data with a number of 

generators smaller than the maximum potential dimension (400, corresponding to the number of 

joints times the number of samples) revealed a coordination in the activation of different joints at 

different times. Once a set of spatiotemporal generators are identified, the data are reconstructed by 

multiplying each generator by a single condition-dependent coefficient (see Figure 2). Thus the 

spatiotemporal decomposition provides a potentially very compact representation of the structure 

inherent in the data. The mean spatiotemporal dimensionality across subjects was 2.75 according to 

both criteria (see Table 3 for individual values). Notably, mean spatial and spatiotemporal 

dimensionalities were very close and even equal for each subject when considering the R
2
 shuffle 

criterion. Moreover, as the temporal dimensionality was 1, the spatiotemporal dimensionality was 

essentially the product of the spatial and the temporal dimensionalities.  

 

Figure 7Aillustrates the R
2
 curve for the spatiotemporal decomposition up to 12 generators and 

Figure 7B the three spatiotemporal component for subject 1. Comparing the structure of these 

generators with that of the spatial (Figure 5B) and temporal (Figure 6B) generators of the same 

subject, it is apparent how each spatiotemporal generator is the product of a spatial generator by a 

temporal one. Indeed, the activation waveforms of all spatiotemporal generators are approximately 

synchronous and similar to the waveform of the single temporal generator. Figure 7C illustrates the 

reconstruction of the joint torques for the same six conditions of Figure 5C and 6C. The torque 

profiles for each condition are reconstructed multiplying each spatiotemporal component by a single 

condition-dependent coefficient (ci), represented by the height of the rectangle below the torque 

profiles. With respect to the reconstruction with spatial and temporal generators, movements 

requiring torque profiles with opposite signs are generated simply by changing the sign in a single 

combination coefficient, e.g. c2for medial and lateral movements and c1 for backward and forward 

movements. 
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Figure 7.Spatiotemporal decomposition of dynamic torques.A: R

2
 curve for subject 1 obtained 

by spatiotemporal decomposition using PCA. B: Three spatiotemporal generators selected for 

subject 1. C: Example of the reconstructions of the dynamic torques for six movement conditions of 

subject 1 obtained with the generator illustrated in panel B (shaded area: original data, thick line: 

reconstructed data, bottom: combination coefficients represented by the height of the rectangle 

containing the temporal profile of each generators averaged over joints). 
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As in previous cases, spatiotemporal generators were similar across subjects.Themean R
2
value for 

the reconstruction of the data of each subject by the generators of all other subjects (0.90 ± 0.04) 

was close to the mean R
2
 for the reconstruction of the data of each subject by the generator 

extracted from the same data (0.95 ± 0.02).  

 

Muscle patterns  
 

Phasic muscle patterns, obtained by subtracting the anti-gravity (tonic) components from the 

rectified, filtered, averaged, time-normalized, and resampled EMG waveforms, were decomposed 

with NMF to assess their dimensionality. Phasic muscle patterns for fast reaching movements in 

vertical planes have been described before (d'Avella et al., 2006). In contrast to our previous study, 

here we identified spatial generators, temporal generators, and spatiotemporal generators without 

onset delays and we compared their dimensionality with the dimensionality of the corresponding 

generators of dynamic torques. 

 

Spatial dimensionality  
The mean spatial dimensionality of the phasic muscle patterns across subjects was 5 according to 

the position of change in slope of the R
2
 curve as a function of the number of generators (R

2
 knee 

criterion) and 5 according to the R
2
 shuffle criterion (see Table 3 for individual values). Thus, as 

expected, the dimensionality of the muscle pattern generator was larger than the number of spatial 

torque generators (2.75 according R
2
 shuffle criterion) as muscle pattern generators could only be 

combined with non-negative time- and condition-dependent combination coefficients. However, the 

number of muscle pattern generators was larger than the minimum required for generating a space 

of the same number of linear dimensions as the torque generators (2.75) by non-negative 

combinations (3.75 = 2.75 + 1).  

 

Figure 8A shows the R
2
 curve for the spatial decomposition of the phasic muscle patterns of subject 

1, in which a knee at 4 generators is clearly visible. The lower R
2
 value at the selected number of 

muscle patterns generators (0.80) with respect to the corresponding value for the torque generators 

(0.99) indicated that a much larger fraction of the muscle data variation was due to noise. The four 

spatial generators (or time-invariant muscle synergies) for the same subject illustrated in Figure 8B 

(w1 ï w4) show specific groupings of muscles spanning multiple joints and with the same muscle 

recruited by multiple generators. Finally, in Figure 8C the examples of the reconstruction of the 

phasic muscle patterns for six movement conditions by the combination of the spatial generators are 

presented. The temporal structure of muscle patterns and of combination coefficients is clearly more 

complex than that of the spatial generators with the tri-phasic organization of the muscle patterns 

generated by both the temporal structure of the combination coefficients and by the superposition of 

different generators. 

 

Finally the spatial generators for the muscle patterns were less similar across subjects than the 

spatial generators for the torques (see Table 5). The reconstruction of the data of each subject by the 

generators of all other subjects had a meanR
2
 (0.66 ± 0.06) much lower than the mean R

2
 for the 

reconstruction by the generators extracted from the same data (0.80 ± 0.04). 
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Figure 8.Spatial decomposition of phasic muscle patterns.A: R

2
 curve for subject 1 obtained by 

spatial decomposition using NMF. B: Four spatial generators selected for subject 1. C: Example of 

the reconstructions of the muscle patterns for six movement conditions of subject 1 obtained with 

the generators illustrated in panel B (shaded area: original data, thick line: reconstructed data, 

bottom: time-varying combination coefficients). 
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Temporal dimensionality  
The mean number of temporal generators of the phasic muscle patterns was 4.5 according to the R

2
 

knee criterion and 3.75 according to the R
2
 shuffle criterion (see Table 3 for individual values). As 

for the spatial generators, the temporal dimensionality of the muscle pattern generators was larger 

than the minimum number required to generate a space with the same linear dimensions as the 

number of temporal torque generators (1) by non-negative combinations (2 = 1 + 1). 

Figure 9A shows the R
2
 curve for the temporal decomposition of the phasic muscle patterns of 

subject 1 and Figure 9B the four temporal generators (or components) selected in that subject 

according to both criteria. The first three generators capture a single burst of muscle activity and the 

fourth component a small burst followed by a larger burst. The four components peak at different 

times and thus they appear to capture four distinct phases of the muscle patterns observed in 

different directions. However, the examples of muscle pattern reconstructions and combination 

weights for six movement directions (Figure 9C) show that in many cases the weight vectors 

loading the different components were similar within each movement condition (e.g. for the first 

two components of the (medial)lateral and downward movements), suggesting that such temporal 

decomposition was necessary to capture not only the major changes in the muscle patterns over the 

duration of the movement but also small asynchronous adjustments.   

In contrast to the spatial generators but similarly to the temporal generators for torques, muscle 

pattern temporal generators were similar across all subjects. The mean R
2
 value for the 

reconstruction of the data of each subject by generators of all other subjects (0.82 ± 0.04) was close 

to the mean value for the reconstruction by the generators extracted from the same data (0.85±0.03). 
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Figure 9.Temporal decomposition of phasic muscle patterns.A: R

2
 curve for subject 1 obtained 

by temporal decomposition using NMF. B: The four temporal generators selected for subject 1. C: 

Example of the reconstructions of muscle patterns for six movement conditions of subject 1 


