
EU FP7

AMARSi

Adaptive Modular Architectures for Rich Motor Skills

ICT-248311

D 5.3

September 2012 (30 months)

Technical report on scaffolding learning by
kinesthetic teaching and incremental learning

Authors: Seyed Mohammad Khansari-Zadeh, Seungsu KIM, Andre Lemme,
Elmar A. Rückert

Due date of deliverable 1st September 2012
Actual submission date 15th October 2012
Lead Partner TUG
Revision Final
Dissemination level Public



Abstract

In this deliverable we present three novel learning approaches and
movement representations which can benefit from kinesthetic support
and imitation learning. These different approaches were applied to
motor skill learning tasks that can benefit from human demonstra-
tions.

In particular EPFL-B has investigated how incremental learning
can be used to adapt a learned forward model of a real robot arm to
a new task. The model was initially learned via kinesthetic teaching
using a dynamical system based approach. Furthermore EPFL-B has
demonstrated which learning mechanisms are involved in teaching a
robot how to catch fast inflight objects. Also this challenging task
benefits from human demonstrations.

UniBi demonstrated how kinesthetic teaching facilitates motor skill
learning in three different scenarios which emphasize that kinesthetic
teaching transfers knowledge about tasks but also task constraints:
first a inverse kinematics model of a KUKA light-weight robot is
learned using recurrent neuronal networks. In a second experiment
the iCub robot was taught via kinesthetic teaching to learn pointing
movements without depth calculation of camera calibration. Finally,
UniBi analysed the trade-offs in a learning and control architecture
between representation and generalization on iCub which was used to
learn and generalize multiple movement primitives that in turn were
acquired via kinesthetic teaching.

At TUG an alternative movement primitive representation based
on probabilistic inference in learned graphical models was developed.
This approach has interesting and new features, i.e. it allows for an
intuitive representation of complex motor skills based on learned cost
functions. The cost function is in the most simple case specified by
learned via-points. They allow for an easy integration of task specific
prior knowledge. This prior knowledge might be observed from hu-
man demonstrations, which is currently investigated on a real robot
in cooperation with UGent.

1



1 Motor skill learning using dynamical sys-

tems that benefit from human demonstra-

tions

1.1 Incremental Learning

When modeling robot discrete motions with Dynamical Systems (DS), en-
suring stability of the learned DS (from a set of demonstrations of the task)
is a key requirement to provide a useful control policy. In our previous work
[1], we presented an approach, called Stable Estimator of Dynamical Sys-
tems (SEDS), to learn the parameters of the DS to ensure that all motions
closely follow the demonstrations while ultimately reaching and stopping at
the target.

Despite the successful application of SEDS in many robot applications
such as playing minigolf [2, 3], obstacle avoidance [4], catching flying objects
[5], grasping [6], it is currently limited in that it only supports offline training.
Incremental learning is often crucial to allow the user to refine the model in
an interactive manner. Without incremental support, if one was to add new
demonstrations after training the model, one would have to retrain entirely
the model based on the combined set of old and new demonstrations. In this
report, we provide preliminary results on extending our previous approach so
as to support incremental learning without compromising the global asymp-
totic stability at the target. The new approach, called SEDS-II, which ex-
ploits the power of Locally Weighted Projection Regression (LWPR) [7, 8]
to perform incremental learning. We evaluate our approach on the 7 degrees
of freedom Barrett WAM arm.

1.1.1 Formalism

Consider a state variable ξ ∈ Rd that can be used to unambiguously define
discrete robot motions with a first order autonomous DS:

ξ̇ = f(ξ) f : Rd 7→ Rd (1)

where f(ξ) is a continuous function. Given an initial point ξ0, the robot
motion along time can be computed by integrating f(ξ) through time:

ξ(t) =

∫ t

0

f(ξ)dt (2)

Given a set of N demonstrations {ξt,n, ξ̇t,n}T
n,N

t=0,n=1, an estimate of f(ξ)
can be built using different statistical approaches such as LWPR, Gaussian

2



Process Regression (GPR) [9], Gaussian Mixture Regression (GMR) [10], or
a combination of them (as we will show in this report). We assume that
the function f(ξ) is continuous and differentiable. We are interested in de-
termining a stabilizing command u(ξ,f(ξ)) ∈ Rd such that the resulting
DS:

ξ̇ = F (ξ) = f(ξ) + u(ξ,f(ξ)) (3)

is 1) globally asymptotically stable at the target ξ∗ to ensure the convergence
of all trajectories to the target, and 2) an accurate estimation of the user
demonstrations to satisfy the task requirements. Both of the above require-
ments are essential for F (ξ) to provide a useful control policy.

1.1.2 Stability

In this section, we present our approach on determining the stabilizing com-
mand u(ξ,f(ξ)) so as to ensure global asymptotic stability of F (ξ) at the
target ξ∗. To simplify the notation, we define:

ξ̄ =
ξ − ξ∗

‖ξ − ξ∗‖
∀ξ ∈ Rd\ξ∗ (4)

α(ξ,f(ξ)) = ξ̄Tf(ξ) ∀ξ ∈ Rd\ξ∗ (5)

where ξ̄ is a unitary vector, and α is a measure of the misalignment be-
tween ξ̄ and the estimated function f(ξ). We define the stabilizing command
u(ξ,f(ξ)), ∀ξ ∈ Rd\ξ∗ and ∀f(ξ) ∈ Rd\ξ∗ according to:

u(ξ,f(ξ)) =− φ
(
α(ξ,f(ξ))

) (
α(ξ,f(ξ)) + κξe

−σξ‖ξ‖ · · ·

+κξ̇(1− e
−σξ‖ξ‖)e−σξ̇‖f(ξ)‖

)
ξ̄ (6)

to guarantee the global asymptotic stability of the DS F (ξ). In Eq. 6, the
parameters κξ, κξ̇, σξ, σξ̇ are positive scalars, and φ(α) ∈ R is a smooth
activation function that is defined by:

φ(α) =


1 0 < α

0.5
(
sin
(
τα) + π/2

)
+ 1
)
−π
τ
≤ α ≤ 0

0 α < −π
τ

(7)

where τ > 0 is a scalar to tune the slope of the activation function (see
Fig. 1). Note that for the clarity of the formulation, we have denoted

3



−1.57 −1.05 −0.52 −0.31 0

0

1

α(ξ, f(.))

φ
(α

(ξ
,f

(.
))
)

R
e
g
io

n
 o

f 
in

s
ta

b
lil

it
y

 b
a
s
e
d
 o

n
 t
h
e
 e

s
ti
m

a
te

d
e
n
e
rg

y
 f
u
n
c
ti
o
n

τ = 2
τ = 3

τ = 6

τ = 10

Fig. 1: Tuning the width of the stability margin with the parameter τ . The
lower the τ , the larger the width of the stability margin.

α(ξ,f(ξ)) with α in Eq. 7. The activation function is used to trigger the
stabilizing command when the system is at the edge of instability. Note
that for α(ξ,f(ξ)) > 0, the stability of f(ξ) cannot be ensured accord-
ing to the Lyapunov stability theorem. In these situations φ(α) = 1, and
the stabilizing command can be used to ensure the stability of the DS. For
−π/τ ≤ α(ξ,f(ξ)) ≤ 0, the activation function smoothly rises from 0 to 1.
In this region, although f(ξ) is stable, it is still slightly modified with the sta-
bilizing command to ensure the continuity of F (ξ). For α(ξ,f(ξ)) < π/τ ,
the system has a safe stability margin (according to the user preference),
hence no stabilizing command is generated, i.e. u(ξ,f(ξ)) = 0.

Fig. 1 illustrates the effect of τ on the activation function. By decreas-
ing τ , the width of the activation region increases. There is a compromise
inherent in setting the value of τ . By lowering τ , we could avoid a sudden
change in the direction of motion. On the other hand, by setting a high τ ,
we could keep the larger part of the stable region intact.

1.1.3 Experiments

We evaluate the performance of the proposed approach in a robot exper-
iment performed on the 7-DOF Barrett WAM arm. In this experiment,
we demonstrate that our approach allows combining two different regression
techniques in order to benefit from the advantages of both. The robot exper-
iment consisted of having the WAM arm place an orange on a plate and into
a bucket. First, the placing task on the plate is shown to the robot seven
times via kinesthetic teaching (see Fig. 2a). A DS estimate of this motion is
constructed using GMM with 7 Gaussian functions.

The demonstrations and the reproduction of the task from the proposed
method are illustrated in Fig. 2b. As is illustrated, the reproductions closely
follow the demonstrations, while their global stability is ensured. Though this

4



model can successfully generate motions to place the orange on the plate, it
cannot be used with the bucket (see the solid black lines in Fig. 3a). In order
to adapt the robot motions to this change while avoiding having to retrain
the whole model, we exploit the incremental learning power of LWPR to
locally modify the DS given by GMR:

ξ̇ = F (ξ) = g(ξ) + l(ξ)︸ ︷︷ ︸
f(ξ)

+u(ξ,f(ξ)) (8)

where g(ξ) and l(ξ) correspond to the DS that are modeled with GMR and
LWPR, respectively. Initially l(ξ) = 0, ∀ξ ∈ Rd. The LWPR model is
trained incrementally and online by interactively correcting the robot move-
ment while it approaches the bucket (see Fig. 3b). The blue hollow circles
in Fig. 3a shows the new training data points that were collected interac-
tively as we have explained. Figure 3c illustrates the reproductions from the
combined DS according to Eq. 8. With the new model, the robot can suc-
cessfully adapt its motion and place the orange into the bucket. Note that
in this experiment, the GMR model grants the base behavior for the placing
task, and the LWPR model provides the required adaptation to the environ-
ment. Anytime when it is necessary, the base behavior can be retrieved by
canceling out the LWPR term in Eq. 8. By extension, one can also imagine
having several LWPR models, each of which provide the required adaptive
behavior for different containers.

1.1.4 Conclusion

In this section, we presented a novel approach to ensure the global asymptotic
stability of DS that are estimated from a set of demonstrations. Compared
to our previous approach [1], this work allows using incremental learning to
refine the behavior of the DS model in an interactive manner. To ensure
global asymptotic stability of the system at the target, our approaches gen-
erates the stabilizing command online to correct the motion when it shows
unstable behavior. At its current form, the stabilizing command is generated
from a hard-coded formula to ensure stability at the target. The generated
stabilizing command may not be optimal from the perspective of the desired
behavior that is defined by the user demonstrations. We are currently in-
vestigating possible means to build an estimate of the stabilizing command
from the user demonstrations (i.e. the same demonstrations as those that
are used in estimating f(ξ)). This is essential as it would allow to reduce
the distortion due to applying the stabilizing command, and thus to generate
motions that are more similar to the user demonstrations.

5



(a)

(1) (2)

(a) The demonstrations of the task through kinesthetic teaching (left),
and its reproductions by the robot (right).

−0.2
0.1

−0.6−0.4−0.200.20.40.6

−0.1

0

0.1

0.2

x(m)
y(m)

z
(m

)

(b)

(b) Generation of trajectories from different initial points

Fig. 2: The robot experiment of placing an orange on a plate. The placing
motion is modeled with GMR.

6



−0.2
0.1

−0.6−0.4−0.200.20.40.6

−0.1

0

0.1

0.2

x(m)
y(m)

z
(m

)

(d)

(a) By replacing the plate with a bucket, the previous model can no
longer be used. To adapt to the new situation, the user interactively
modifies the robot trajectory as the robot approaches the bucket. These
data are used to incrementally train the LWPR DS. The new training
data points for the LWPR DS are shown with blue hollow circle. The
solid black lines represents trajectories generated with solely using the
GMR model.

(c)

(1) (2)

(b) Training interactively the DS model in order to adapt to the new sit-
uation (left). The robot reproduction with the combined LWPR+GMR
DS (Right).

−0.2
0.1

−0.6−0.4−0.200.20.40.6

−0.1

0

0.1

0.2

x(m)
y(m)

z
(m

)

(e)

(c) Trajectories generated with the combined GMR+LWPR DS. The
generated trajectories can successfully place the orange into the bucket.

Fig. 3: Adaptation of the DS for the case where the plate is replaced with
the bucket.

7



1.2 Catching an object in-flight

We combined different stages of learning to teach a robot how to catch in-
flight fast moving targets. These stages include: (1) learning how to predict
accurately the trajectories of fast moving objects; (2) learning how to deter-
mine the mid-flight catching configuration (intercept point) and (3) learning
motion of arm-and-hand to enable fast planning of precise trajectories for
the robots arm to intercept and catch the object on time. The schematic
overview and control flow of the task are shown in Fig. 4 and 5.

(1) Object trajectory
prediction

(2) Best catching pose
prediction

Measurement point

Initial posture of a robot

(3) Hand-arm control

Reachable space
of iCub robot

Fig. 4: Schematic overview of the task

1.2.1 Learning the dynamics of a moving object

To predict the trajectory of a flying object, we take a dynamical system based
modeling approach. In its most generic form, the dynamics of a free-flying
object follows a 2nd-order autonomous dynamical system:

ξ̈ = f
(
ξ, ξ̇
)

(9)

where, ξ ∈ RD denotes the state of the object (position and orientation vector
of the point of interest attached with the object). ξ̇ ∈ RD and ξ̈ ∈ RD denote
the first and second derivatives of ξ.

We consider complex objects that have non-diagonal inertia matrices and
where the point of interest (the grasping point) is not located at the center

8



(2) Best catching pose
prediction

(1) Object trajectory
prediction

Measuring
object motion

Learning dynamics of a moving object
from observing frying object motion

(3) Robot Hand-arm
planning

Solving
Inverse kinematics

Robot

Vision system Different stages of learning

Object position
and orientation

Predicted
Object trajectory

Robot catching posture and
catching time

Robot posture
in Cartesian

Joint angles

Iterating
at 500 Hz

Information Flow

Process Flow

Iterating at 100 Hz

Broadcasting object postures
at 240 Hz

Process Block

System Block

Learning catching configuration:
- Reachability model

Graspability model-
from self-learning

from human demonstration

Learning dynamics of arm motion
from human demonstration
(SEDS - )AMARSi Deliverable 4.1

Learning process Block

Fig. 5: Control flow of the task and different stages of learning

of mass. Using several examples, in which a demonstrator threw five ob-
jects (ball, half empty bottle and empty bottle, hammer and tennis racket),
varying the initial translational and rotation speed, we contrasted five state-
of-the-art non-linear regression techniques to best estimate this complex non-
linear dynamics f (.) [11]. Encoding the demonstrations using a Dynamical
System (DS) provides an efficient way to model the dynamics of a moving
object solely by observing examples of the objects motion in space. We
could further estimate the whole trajectory of the object by integrating the
DS in time. To enable real-time tracking, the estimated model of the ob-
jects dynamics is coupled with an Extended Kalman Filter for robustness
against noisy sensing. A complete description of the method with a detailed
comparison across different techniques for the estimation is available at [11].

1.2.2 Predicting catching configuration

To predict the mid-flight catching configuration, we developed a data driven
probabilistic model of the robots reachable-space of a robot and of the grasp-
ing posture (position and orientation of hand with respect to an object). The
reachable space is learned through motor babbling, whereas the grasping re-
gion on the object is learned from demonstration of grasping on static object.
The learned reachable space of iCub humanoid robot and the graspable space
for an hammer are shown at Fig. 6 and 7 respectively. By combining the
likelihood yielded by the learned workspace model and the model of the

9



grasping region onto the object, the robot can determine whether the object
is catchable or not, as well as determine the best grasping posture without
path planning and solving explicitly the inverse kinematics.

(a) samples x-y (b) model x-y

(c) samples x-z (d) model x-z (e) samples y-z (f) model y-z

e
1

e
2

e
3

 

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

X axis
Y axis

(g) orientation

Fig. 6: Modeling of reachable space for right arm of iCub humanoid robot.
(a,c and e) show the reachable 3D cartesian points which are demonstrated
from the uniform distribution in joint space. (b,d and f) show the probability
contour of the reachable space model which is trained through Gaussian
Mixture Model with 10 Gaussians. (g) shows the orientation contour when
the iCub’s end-effector position is [−0.2, 0.2, 0.45]

10



(a) A hammer

e
2

e
1

e
3

2

4

6

8

10

12

x 10
5

Y axis X axis 

(b) x and y directional
contour of orientation

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

X

Y

 

 

(c) x-y model at z=0.0

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

X

Z

 

 

(d) x-z model at y=0.0

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

Y
Z

 

 

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

(e) y-z model at x=0.0

Fig. 7: Modeling graspable space of a hammer for iCub hand: The graspable
space is modeled using GMM with 10 Gaussians. (c,d and e) show Likelihood
contour for end-effector position; (b) shows x and y directional likelihood
contour of orientation with the fixed position [0.0, 0.0, 0.035].

1.2.3 Hand-Arm Control

We use the CDS model [6] for controlling the arm and fingers in coordina-
tion. This approach comprises of learning two different dynamical systems
for reaching (arm) and grasping (fingers) trained through SEDS [1] and one
inference model that learns a task metric for hand-arm coupling. The two
dynamics models are then coupled during task execution using the inference
model. In this implementation, we implement the coupling using the met-
ric of distance-to-target. Such a spatial coupling between hand and fingers
ensures timely closure of the fingers while following the learned dynamics as
closely as possible, even in the presence of arbitrary perturbations. In this
framework, we use the timed DS controller of [5] for the reaching motion in
order to intercept the flying object at the desired instant. It is to be noted
that no change in the other member models of CDS is needed to be compat-
ible with the new reaching dynamics. For more details the reader is referred
to [6].

11



The predicted catching posture calculated by the above best catching
prediction module is fed as target to the position and orientation dynamical
systems. Although this predicted catching configuration is updated at every
control cycle, the end-effector and finger joint trajectories generated by our
model remain smooth and feasible. The robot continuously adapts the hand
and arm motion as the prediction of the final catching posture improve over
time. Output of the position and orientation DS is converted into the joint
state of a robot using the damped least squares inverse kinematics.

We evaluate the performance of the proposed system using two sets of
experiments, iCub humanoid robot simulator and the KUKA LBR 4+ plat-
form; see the results in Fig. 8 and 9.

12



Fig. 8: An hammer and a racket is thrown 3 miter distance from the robot
in the iCub simulator. The simulated iCub robot catches the hammer and
the racket in the fly.

Fig. 9: A thrower throws a bottle 3 miter distance from the KUKA-KWR
robot. The robot catches a bottle in the fly. The full video is available in
the AMARSi YouTube site, http://www.youtube.com/amarsiproject

13



2 Scaffolding learning using kinesthetic sup-

port and imitation

Currently, kinesthetic teaching is mostly used for rapid initialization of a rep-
resentation in task space like for instance in section one above. In this func-
tion, kinesthetic teaching has been considered as one of the possible interfaces
for learning from observation, for instance by substituting visual observation.
Much less, however, it has been considered that in particular for redundant
robots, the redundancy resolution in joint space provides additional degrees
of freedom and in the presence of complex mechanisms, bi-manuals skills, or
complex environments actually a particular redundancy resolution encodes
information about the task constraints in addition to the actual end-effector
task. This information can also be very efficiently transfered to the robot by
kinesthetic teaching because the human often intuitively knows how to use
the redundancy in the robot reasonably. Thereby, additional modeling efforts
for task constraints can be avoided, e.g. an proceeding 3D scene analysis, or
the optimal way of avoiding self-collisions.

In the following we discuss the use of kinesthetic teaching for different
tasks and consider in particular the representations that need to be derived
by the learning process. First, we will start to describe a scenario in which
we learn the inverse kinematics for the Kuka LWR [12]. Second, we show
a similar scenario in which we added vision to perceive objects and learn a
pointing behavior (contribution to Exp. scenario E3). And at last we show a
complex movement scenario in which we can learn complex skills which also
include tool use. This also contribute to architecture w.r. to WP6.

2.1 Learning inverse kinematics

One major goal of current robotics research is to enable robots to become
co-workers that collaborate with humans efficiently and adapt to changing
environments or work flows. In [13] we present an approach utilizing the
physical interaction capabilities of compliant robots with data-driven and
model-free learning in a coherent system in order to make fast reconfiguration
of redundant robots feasible. Users with no particular robotics knowledge
can perform this task in physical interaction with the compliant robot, for
example to reconfigure a work cell due to changes in the environment. For
fast and efficient learning of the respective null-space constraints, a reservoir
neural network is employed. It is embedded in the motion controller of the
system, hence allowing for execution of arbitrary motions in task space. We
describe the training, exploration and the control architecture of the systems

14



Fig. 10: Block diagram illustrating the control scheme with its three control
loops. Physical interaction between the human operator and the robot is
modeled as interaction force fint

on the Kuka Light-Weight Robot (LWR).
This work is an example of how to integrate the kinesthetic teaching in a

control scheme such that the information can be passed down to the learning
algorithms. This control scheme is also similar to the ones used in the work
described in the next sections.

In order to explain the control scheme of this work, including the use
of compliance features of the robot for kinesthetic teaching and position
impedance control with the learned recurrent neural network (RNN) con-
troller, we provide a systems engineering perspective to the system. Fig. 10
depicts the major functional blocks and their control flow. In its two modes,
exploration and execution, the system selectively activates different control
strategies as explained in the following.

Exploration: In a first phase of exploration the robot is in its gravitation
compensation mode, where forces applied to the robot are not counteracted
by the controller. This phase is used to position the robot manually to a
desired joint angle configuration qinit. After the configuration is reached,
the robot is switched to impedance control for recording training data via
kinesthetic teaching. In this phase the Cartesian position control and joint
position control is inactive. The only active control loop in this phase is the
inner impedance control loop of the LWR. Reference for this control loop is
the interaction force fint applied by the operator and the chosen joint angle
configuration qinit. Parameters for the impedance controller are stiffness and
damping in Cartesian coordinates, which were carefully chosen to allow easy
physical interaction with the robot.

During kinesthetic teaching the current joint angles qcur and the corre-
sponding Cartesian end-effector positions xcur are recorded and after suc-
cessful training passed as training data to the RNN to enable the network to
learn the taught constraints. Once learning is finished, the trained network
is embedded in the hybrid control scheme explained in the following.

15



Execution: During the execution phase a 3D task-space trajectory xdes is
provided by the user and the position controllers are active. The end-effector
positions xdes are passed to the RNN to map them to desired joint values
qdes. Note that the the RNN that was trained in the exploration phase, now
serves as open-loop controller constraining the redundancy resolution.

Our results show that the learned model solves the redundancy resolution
problem under the given constraints with sufficient accuracy and general-
izes to generate valid joint-space trajectories even in untrained areas of the
workspace. Note that the viewpoint on kinesthetic teaching here is unconven-
tional: we do not teach the actual task in form of end-effector trajectories,
but rather teach examples of redundancy resolution that respect the par-
ticular constraints for the complex environment and avoid collisions with
permanent obstacles in the workspace. This type of encoding of the task
constraints by learning first can be combined with the task space learning,
e.g. as provided in section one or with other methods developed previously
in WP4, and dynamic obstacle avoidance. It replaces an explicit modeling
of the 3D-scene and the definition of a respective computational scheme for
redundancy resolution that respects the constraints by a simple teaching pro-
cedure that transfers the implicit human knowledge on how to deal with a
complex environment to the robot.

2.2 Learning redundancy resolution for pointing with-
out depth calculation

Pointing at and gesturing towards something refer to orienting a hand, arm,
head or body in the direction of an object and constitute basic communicative
abilities for cognitive agents (e.g. humanoid robots). The goal of this work is
to show that both approximate pointing by a hand gesture and exact point-
ing, can be learned as a direct mapping from the object’s pixel coordinates in
the visual field to hand positions or to joint angles respectively. Again, the
goal is to omit a number of modeling steps that would usually be required
for this task. We do not compute a 3D position of the object, do not need
any camera calibration, and again let the user define the redundancy resolu-
tion, this time of the iCub robot’s arm. In [14, 15], different neural network
paradigms (multilayer perceptron, extreme learning machine and reservoir
computing) were explored, to learn pointing and gesturing based real world
data gathered on the humanoid robot iCub. Training data are interactively
generated and, for exact pointing, recorded from kinesthetic teaching.

Despite the seemingly simple character of the everyday gesturing and
pointing, there are substantial differences with respect to how the corre-

16



(a) (b) (c)

Fig. 11: (a) Illustration of the different mappings possible to solve pointing
and gesturing tasks. The numbers are indexing the concrete mapping re-
ferred to in the text.(b) Illustration of pointing task characteristics and (b)
a learning configuration of kinesthetic teaching for pointing gestures.

sponding mapping is modeled, represented and computed. Fig. 11a illus-
trates different options, which lead to different approaches. These are given
by concatenating mappings along the different paths starting from the lower
right box and ending at the lower left box. The lower right box represents the
intrinsic visual coordinates given in pixel coordinates for the left and right
camera image (iL, jL, iR, jR), which are provided as input for the different
approaches. We refer all mappings, which do not map directly from pixel
coordinates to joint angles as non-direct, because to control the robot we
would need joint angels, which we get only with additional mappings. We
first identify Mappings 1 and 2, as follows.

Mapping 1 - It is defined as a direct mapping from pixels to joint angles
(θ1, ..., θ7) for fully controlled positioning of the arm, including orien-
tation for exact pointing.

Mapping 2 - In this case, we have a mapping from pixels to 3D hand posi-
tions in task space (xe, ye, ze) for gesturing.

There is a difference in complexity between Mappings 1 and 2. The former
needs more information and must handle more precisely the redundancies in
the arm to provide the correct orientation of the forearm pointing to the
object. The latter just assumes that the hand is positioned at the point
of the robot egosphere, which is closest to the object. That is, the projec-
tion of the 3D-object position along the pointing ray onto the egosphere of
reachable positions is the learning target (cf. Fig. 11b), which can be reached
with different redundancy resolutions of the arm and therefore different exact
pointing directions.

17



Thus, for learning the Mapping 2, less information needs to be provided.
However, exact pointing cannot be expected, since the standard inverse kine-
matics (Mapping 5), which is used to provide the joint angles for positioning
of the hand, does not possess previous knowledge about the pointing re-
quirement and uses other criteria for resolving the redundancy. Learning the
Mapping 2 from data will constitute the first learning scenario for gesturing.

For the sake of comparison, Mappings 4a and 4b are then defined as
follows.

Mapping 4a - It is defined as a mapping from the object position in space
to end-effector coordinates.

Mapping 4b - In this case, we have a mapping from the object position in
space to joint angles (θ1, ..., θ7).

It is worth emphasizing the differences between the proposed approaches
(i.e. Mappings 1 and 2) and the standard approaches available in the litera-
ture (i.e. Mappings 4a and 4b). Learning the Mappings 4a and 4b would first
require the computation of 3D-object positions (xb, yb, zb) as defined by the
Mapping 3 and then consider pointing as a kind of reaching towards these
coordinates through Mappings 4a and 4b. This is feasible only if the 3D-
coordinates of the objects can be inferred from the camera images, which
requires stereo matching and depth calculation. As compared to the direct
approach, the depth calculation provides useful but dispensable information
for pointing and is well known to be difficult, because the stereo-matching
problem is ill-posed.

In this study different mappings to learn pointing on the humanoid robot
iCub have been explored. In the first experiments, a simulated environment
is used to generate training data and tested three different data-driven and
model-free learning approaches on this dataset. From all networks archi-
tectures tested in this study, the Static Reservoir Computing and Extreme
Learning Machine, refined with intrinsic plasticity learning, have shown very
good performances. As a result gesturing behavior is already possible to im-
plement in this setup. An additional result is that the learning of a direct
mapping, from pixel coordinates to arm joint values, for pointing without
depth calculation is possible, if respective visuo-motor training data is avail-
able.

In the real world experiments a human tutor was teaching iCub how
to point, by using kinesthetic teaching to gather training data intrinsically
containing constraints given by the robots body structure. The results em-
phasizes the effectiveness of the kinesthetic teaching. The tutor effortless
finds a very good solution to the more complex redundancy resolution to

18



point at the ball in the first layer, even without any deliberation or explicit
knowledge that this part of the task differs from the others. No explicit
modeling of the robot’s body or the task constraint is therefore necessary,
provided the training data is sufficient for all different conditions. Thereby a
very effective teaching takes place, from the tutor to the robot. This conveys
the task constraint given in form of different redundancy resolutions along
with the task itself.

The main advantage of this learning setup is that adaptation to changes
in the task, the robot’s morphology (e.g. use a stick to point), or the environ-
ment can be achieved by quickly relearn the mapping, which takes only few
minutes. This is possible, because the data driven learning prevents explicit
modeling and calibration of the camera and the robot and rather enables
an optimal knowledge transfer from the human to the robot via kinesthetic
teaching. Parts of these results are published in [14] and under revision in
[15].

2.3 Learning Skills and tool-use

The study presented in [16] on a modular architecture for bi-manual skill
acquisition from kinesthetic teaching takes the discussed work on step fur-
ther in combining architecture, kinesthetic teaching and stable movement
primitives 1. Skills are learned and embedded over several representational
levels comprising a compact movement representation by means of move-
ment primitives, a task space description of the bi-manual tool constraint,
and the particular redundancy resolution of the inverse kinematics. This
representation scheme together with a novel stabilization approach for dy-
namical movement primitives yields to very robust teaching and execution
of a complex sequence of bi-manual skills for the humanoid robot iCub.

In [16], a bi-manual skill is constituted through an interplay of several
partial representations, which address particular features of the skill and
have different degrees of invariance. Subscribing to the learning movement
primitives from demonstration approach, a robot and coordinate system in-
variant representation of the task space movement is aimed at, which then
can flexibly executed and generalized. Four representational issues need to
be solved:

Movement Representation: Encoding of movements in a task space, which
is sufficient to explain the entire motion pattern. The elements of this space
are denoted by g and describe the bi-manual motions in a compact way by
the end effector trajectory of the guiding hand, that is the hand with the

1Implications on the architecture for rich motor skills are discussed further in D6.2.

19



Fig. 12: Experimental setup of the physical human-robot interaction: A hu-
man tutor teaches iCub a bi-manual skill without tool [left] and with [right].

highest spatial variance during the motion.
Task Expansion: Expansion of the current target g from the compact

movement space, e.g. representation of a end effector coordinates for one
arm, to an explicit task formulation, e.g. end effector coordinates p{l,r} of
both arms.

Modulation: Temporal and spatial modulation of the movement, e.g.
modulation of the movement’s speed and the embedding of the movement
into the robot’s workspace. We denote modulation signals for speed and for
spatial transformation of task space variables g or p by means of homoge-
neous transformation.

Redundancy Resolution: Mapping from task space specification p{l,r} to
joint angles q{l,r} using a particular redundancy resolution scheme.

One particular feature in this representation architecture is the learning
of task expansions, which has not been addressed before (to the best of
our knowledge), either because simpler skills do not need a task expansion
to model constrained movements of body parts or because task expansions
were modeled explicitly.

Multiple skills are combined in an architecture (see Fig. 13), where the
skill design with late spatial skill modulation is used to achieve optimal gener-
alization from few kinesthetic demonstrations. The skill representations are
enhanced with top-level sequencing, where selection of tasks, i.e. particular
sequences of skills, translates to selecting one of the sequencer modules (see
top row Fig. 13 ”Sequencer Layer”). Fig. 13 indicates how external feedback
can be integrated into the architecture by providing modulation signals to
the current sequencer module, which then pass modulation signals on to the
skills. This could be visual feedback, input from a planner or user input, as
it is used here.

20



Fig. 13: Modular skill architecture comprising a library of skills and top-
level sequencer modules. The teacher provides training data for learning on
each representational level by means of kinesthetic teaching. Proprioceptive
feedback is propagated bottom-up and enters the movement primitive repre-
sentation. Visual feedback modulates skill execution in a top-down fashion.

We implemented different phases for teaching, learning, in which we build
up the different mappings for the needed skill and a execution phase where
we perform the skill.

In the exploration phase, a human tutor physically guides the robot in
order to generate training data. This kinesthetic teaching phase comprises
the following steps: First, the robot grasps a stick-like object by means of
a preprogrammed procedure and with the assistance of the tutor. Next, the
controllers for both arms are switched to joint impedance mode such that the
tutor can move the robot’s arms while it holds the stick. The tutor actively
moves both of iCub arms to teach a bi-manual skill and the joint angles of
both arms are recorded (compare Fig. 12).

In the learning phase, which is following each demonstration of the tutor,
the recorded joint angle trajectories q{l,r}(k) for k = 1, . . . , K of both arms
are augmented with the respective end effector coordinates p{l,r}(k) by calcu-
lating the forward kinematics. An automated data analysis is conducted to
determine the task space coordinates g of the guiding hand, i.e. the end effec-
tor trajectory with the highest spatial variance. It further checks whether the
data can be modeled with a single, periodic movement primitive, or whether
the skill comprises a sequence of discrete motions. Based on the teaching
data, the respective movement primitives and their sequencing is learned.

In the execution phase, skills are performed by unrolling the movement

21



representation to joint angles. Modulation signals shift, rotate and scale the
skill in the robot’s workspace and control the speed of the motion.

Also in this work, the kinesthetic teaching is used to provide task con-
straints via the particular redundancy resolution which is needed for the bi-
manual manipulation. Additionally and in the same demonstration, the task
space trajectories are provided as well. Other than in the first scenario on
the LWR, where task constraints were separated from the the actual task and
learned separately through a network devoted to redundancy resolution only,
here it would in principle be possible to directly learn one holistic mapping
comprising both, the task and the task constraints. Kinesthetic teaching can
provide the required information, however, the internal representation will
differ and therefore the demands on quality and size of training data as well.
It shall be noted in this context that kinesthetic teaching data necessarily is
sparse. Only a few demonstrations will be feasible on a complex robot and
therefore some bias needs to be added in the control architecture to allow
for strong generalization. Comparative evaluation of different architectures
in [16] shows that a separation of redundancy resolution providing the task
constraint and the task and its task expansion is useful to optimally exploit
the sparse data obtained from kinesthetic teaching.

2.4 Discussion

The presented scenarios shed more light on the role of kinesthetic teaching
and the associated knowledge transfer from the user to the robotic system.
Going beyond the usual understanding of kinesthetic teaching as mere inter-
face for demonstration of task space movements, we show that kinesthetic
teaching can in particular be used to learn task constraints, which are im-
plicitly encoded in particular redundancy resolution schemes. Whereas this
is not necessary if only free movements and simple environments are con-
sidered. The examples of movement constraint environment, of self-collision
avoidance, and of bi-manual skills all show that explicit modeling steps for en-
coding this kind of task constraints in redundancy resolution can be avoided
by kinesthetic teaching. This is highly desirable from a practical point of
view. While explicit schemes are in principle feasible, they always required
explicit modeling, additional external sensing and a skilled programmer to
implement or change a particular redundancy resolution approach. This is
time-consuming and costly and prevent teaching of advanced tasks by naive
users, who however at least on humanoid robots easily and intuitively know
how to guide an arm even in a complex task. It turns out that even a sep-
arate learning only of the task constraints can be useful, for which the only
reasonable interface is kinesthetic teaching. In summary, by using kinesthetic

22



teaching prior knowledge of the task and explicit modeling steps can be re-
duced because the intelligence of the tutor is used to provides “just right”
data for the learning architecture respecting task constraints. This enables
a fast reconfiguration and teaching capability for every-day users.

3 Principles for an alternative movement rep-

resentation

In this section we describe an alternative movement primitive representation
based on probabilistic inference in learned graphical models. The presented
approach has interesting and new features, i.e. it allows for an easy integration
of task specific prior knowledge. This prior knowledge might be observed
from human demonstrations in the form of relevant via-points or desired
energy states of a dynamical system. However, in this work we only present
the basic characteristics of this promising approach for motor skill learning.
A detailed description of the approach can be found at the AMARSi project
website2. The benefit of human demonstrations for motor skill learning is
currently investigated on a real robot in collaboration with UGent.

3.1 Learned Graphical Models for Probabilistic Plan-
ning Provide a New Class of Movement Primitives

Biological movement generation combines three interesting aspects: its mod-
ular organization in movement primitives, its characteristics of stochastic
optimality under perturbations, and its efficiency in terms of learning. In
this work TUG aims to integrate stochastic optimal control principles within
a movement primitive to enable more efficient learning. A common approach
to motor skill learning is to endow the primitives with dynamical systems.
Here, the parameters of the primitive indirectly define the shape of a refer-
ence trajectory. Instead of endowing the primitives with dynamical systems,
TUG proposes to endow movement primitives with an intrinsic probabilistic
planning system, integrating the power of stochastic optimal control meth-
ods within a movement primitive. The parametrization of the primitive is
a learned graphical model that represents the dynamics and intrinsic cost
function such that inference in this graphical model yields the control policy.
TUG parametrizes the intrinsic cost function using task-relevant features,
such as the importance of passing through certain via-points. The system

2https://redmine.amarsi-project.eu/documents/125

23



dynamics as well as intrinsic cost function parameters are learned in a rein-
forcement learning setting. In experiments using complex dynamic balancing
tasks TUG has demonstrated that their movement representation facilitates
learning significantly and leads to better generalization to new task settings
without re-learning. This work has been submitted to a journal. In future
research TUG will investigate the benefits of this compact movement rep-
resentation for imitation learning, where potentially only few characteristic
features of movements, i.e. the step length for a walking movement are suf-
ficient for a fast acquisition of new motor skills.

(a) Optimal policy learned with DMPs (average costs over 1000 trajectories: 1286±
556)

(b) Optimal policy learned with PMPs (average costs over 1000 trajectories: 1173±
596)

Fig. 14: This figure illustrates the best available policies for the DMPs and
the PMPs for a simple via-point task. From left to right shown are the point
mass trajectories, the variance of these trajectories, the velocity of the point
mass, and the applied accelerations. The agent has to pass the via-point
at 0.3s and deal with the stochasticity of the system. The plots show 100
trajectories reproduced with the optimal parameters for the DMPs (a) and
100 trajectories with the (handcrafted) optimal parameters for PMPs (b).
The PMP approach is able to reduce the variance of the movement if it is
relevant for the task, while the DMPs can only suppress the noise in the
system throughout the trajectory in order to get an acceptable score. This
advantage is also reflected by the average costs over 1000 trajectories. The
DMP solution achieved cost values of 1286 ± 556 whereas the PMP result
was 1173 ± 596.

24



Novelty of this work: Due to the use of the intrinsic planning system this
novel movement representation complies with basic principles of stochastic
optimal control. For example, the developed planning movement primitives
(PMPs) are able to account for the motor variability often observed in human
motion. Instead of suppressing the noise of the system by following a single
reference trajectory, the PMPs are able to learn to intervene the system
only if it is necessary to fulfill a given task, also known as the minimum
intervention principle. This allows a much higher variance in parts of the
trajectory where less accuracy is needed and is illustrated in Figure 14 on
a simple via-point task. Current methods like the widely used Dynamic
Movement Primitives (DMPs), which rely on a reference trajectory, are not
able to reproduce these effects.

References

[1] Seyed Mohammad Khansari-Zadeh and Aude Billard, “Learning stable non-
linear dynamical systems with gaussian mixture models,” IEEE Transaction
on Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[2] S. M. Khansari-Zadeh, K. Kronander, and A. Billard, “Learning to play
minigolf: A dynamical system-based approach,” Advanced Robotics, 2012.

[3] K. Kronander, S. M. Khansari Zadeh, and A. Billard, “Learning to control
planar hitting motions in a monigolf-like task,” in Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems (IROS), 2011.

[4] S.-M. Khansari-Zadeh and A. Billard, “A dynamical system approach to
realtime obstacle avoidance,” Autonomous Robots, vol. 32, pp. 433–454, 2012,
10.1007/s10514-012-9287-y.

[5] Seungsu Kim, Elena Gribovskaya, and Aude Billard, “Learning motion dy-
namics to catch a moving Object,” in 10th IEEE-RAS International Confer-
ence on Humanoid Robots, 2010.

[6] Ashwini Shukla and Aude Billard, “Coupled dynamical system based arm-
hand grasping model for learning fast adaptation strategies,” Robotics and
Autonomous Systems, vol. 60, no. 3, pp. 424–440, 2012.

[7] S. Vijayakumar and S. Schaal, “Locally weighted projection regression: An
o(n) algorithm for incremental real time learning in high dimensional space,”
in Proc. of 17th Int. Conf. on Machine Learning (ICML), 2000.

[8] S. Schaal, C. Atkeson, and S. Vijayakumar, “Scalable locally weighted statis-
tical techniques for real time robot learning,” Applied Intelligence - Special

25



issue on Scalable Robotic Applications of Neural Networks, vol. 17, no. 1, pp.
49 – 60, 2002.

[9] C. Rasmussen and C. Williams, Gaussian processes for machine learning,
Springer, 2006.

[10] G. McLachlan and D. Peel, Finite Mixture Models, Wiley, 2000.

[11] Seungsu Kim and Aude Billard, “Estimating the non-linear dynamics of
free-flying objects,” Robotics and Autonomous Systems, vol. 60, no. 9, pp.
1108–1122, 2012.

[12] R. Bischoff, J. Kurth, G. Schreiber, R. Köppe, A. Albu-Schäffer, D. Beyer,
O. Eiberger, S. Haddadin, A. Stemmer, and G. Grunwald, “The KUKA-DLR
Lightweight Robot arm – a new reference platform for robotics research and
manufacturing Summary / Abstract Stages of research and product devel-
opment,” Joint 41th International Symposium on Robotics and 6th German
Conference on Robotics, pp. 741–748, 2010.

[13] Arne Nordmann, Christian Emmerich, Stefan Rüther, Andre Lemme, Sebas-
tian Wrede, and Jochen J Steil, “Teaching nullspace constraints in physical
human-robot interaction using reservoir computing,” in International Con-
ference on Robotics and Automation, St. Paul, 2012, pp. 1868 – 1875.

[14] Ananda Freire, Andre Lemme, Jochen J Steil, and G. Barreto, “Learning
visuo-motor coordination for pointing without depth calculation,” in Euro-
pean Symposium on Artificial Neural Networks, 2012, pp. 91–96.

[15] Andre Lemme, Ananda Freire, G. Barreto, and Jochen JSteil, “Kinesthetic
teaching of visuomotor coordination for pointing by the humanoid robot
icub,” Neurocomputing, under revision.

[16] René Felix Reinhart, Andre Lemme, and Jochen Jakob Steil, “Representation
and generalization of bi-manual skills from kinesthetic teaching,” in 2012
IEEE-RAS International Conference on Humanoid Robots, accepted.

26


